FINAL REPORT

PRIVILEGED ATTORNEY/CLIENT COMMUNICATION PREPARED IN ANTICIPATION OF LITIGATION ATTORNEY WORK PRODUCT

RECEIVED

ACRE PERSONNELLANCE STANCE

RECEIVED

ACRE CONTRACTOR STANCE

ACRE CONTRACTOR STANCE

ACRE CONTRACTOR STANCE

ACRE CONTRACTOR STANCE

ACRE CEIVED

PHASE II SITE ASSESSMENT

CONSTRUCTION AREA

OMAHA SHOPS

Prepared for Union Pacific Railroad Company Omaha, Nebraska December 1995

101 South 108th Avenue Omaha, Nebraska 68154

W-C Project 91MC204

R00077668 RCRA Records Center

TABLE OF CONTENTS

Section	<u>on</u>		Page
1.0	INTR	RODUCTION	1-1
	1.1 1.2 1.3	PROJECT BACKGROUND PURPOSE SCOPE OF SERVICES	1-1 1-1 1-2
2.0	SITE	DESCRIPTION	2-1
	2.1 2.2 2.3	LOCATION GEOLOGY AND HYDROGEOLOGY PREVIOUS STUDIES AND INVESTIGATIONS	2-1 2-1 2-2
		 2.3.1 PCB Transformers 2.3.2 Asbestos Survey 2.3.3 Preliminary Site Assessment 2.3.4 Diesel Fuel Recovery System 2.3.5 Phase I Site Assessment 	2-2 2-3 2-3 2-3 2-4
3.0	FIEL	LD INVESTIGATION	3-1
	3.1	DRILLING AND SOIL SAMPLING	3-1
		3.1.1 Field Screening3.1.2 Laboratory Analysis	3-1 3-2
	3.2 3.3	DECONTAMINATION HEALTH AND SAFETY	3-3 3-4
4.0	NAT	TURE AND EXTENT OF CONTAMINATION	4-1
	4.1 4.2	DISCUSSION OF ANALYTICAL RESULTS DATA QUALITY	4-1 4-3
		 4.2.1 Holding Times 4.2.2 Matrix Spike/Matrix Spike Duplicates 4.2.3 Trip Blank Samples 4.2.4 Field Duplicate Samples 4.2.5 Laboratory Control Samples 4.2.6 Method Blanks 	4-3 4-4 4-5 4-5 4-5 4-6

TABLE OF CONTENTS (Continued)

Secti	ion		Page
		4.2.7 Surrogate Compound Recoveries4.2.8 Quantitation Limits4.2.9 Summary	4-6 4-7 4-7
5.0	SUM	MARY AND CONCLUSIONS	5-1
	5.1	SUMMARY	5-1
		5.1.1 Site History5.1.2 Physical Characteristics5.1.3 Nature and Extent of Contamination	5-1 5-1 5-2
	5.2 5.3	CONCLUSIONS RECOMMENDATIONS	5-3 5-4
6.0	REFI	ERENCES	6-1

TABLE OF CONTENTS (Continued)

LIST OF TABLES

TABLE 4-1	CONSTRUCTION AREA SOIL SAMPLING SUMMARY
TABLE 4-2	CONSTRUCTION AREA SOIL SAMPLING RESULTS
TABLE 4-3	CONSTRUCTION AREA SOIL SAMPLING RESULTS SUMMARY

LIST OF FIGURES

FIGURE 2-1	SITE LOCATION MAP
FIGURE 2-2	SHALLOW POTENTIOMETRIC SURFACE - MARCH 1992
FIGURE 4-1	CONSTRUCTION AREA SOIL SAMPLING LOCATIONS

LIST OF APPENDIXES

APPENDIX CONSTRUCTION AREA BORING LOGS

1.1 PROJECT BACKGROUND

The Union Pacific Railroad Company (UPRR) Omaha Shops are located north of downtown Omaha in Douglas County, Nebraska. UPRR is in the process of closing operations at the facility. Locomotive repair and maintenance activities at the Omaha Shops were ended in 1988. Limited rail car maintenance activities remain. UPRR has contracted Woodward-Clyde Consultants (WCC) to provide planning and engineering services for a Phase II Site Assessment (SA). This project is a follow-up study to investigations done for UPRR between 1987 and 1990 by United States Pollution Control Inc. (USPCI), SOS International, Terracon Consultants EC Inc., and HDR Engineering, Inc.

In December 1992, the Omaha Shops property became a candidate site for construction of an automobile assembly facility. Key elements of the development plan for the site included construction of a large manufacturing facility building and relocation of existing large-diameter sewers underlying the site. UPRR contracted WCC to investigate the area of the Omaha Shops property that would be affected by the proposed automobile manufacturing facility construction activities. The area investigated was identified as the "Construction Area" and it includes an area defined by the proposed manufacturing facility building footprint and the proposed sewer relocation corridor.

1.2 PURPOSE

The purpose of this investigation is to evaluate the areal extent of contaminated soil in the Construction Area of the Omaha Shops. The scope of activities was based on the findings of previous site investigations, and the additional fieldwork was intended to supplement previously collected data.

1.3 SCOPE OF SERVICES

Additional soil data were collected in the Construction Area to meet the following objectives:

- Identify and evaluate potential soil contamination
- Estimate the horizontal and vertical extent of identified soil contamination

Five soil borings were located along the proposed centerline of the relocated sewer. Data from these soil borings will be used to evaluate whether special procedures or precautions will be required for the sewer relocation construction project. A total of 14 soil borings were drilled in the proposed building area. Data from these soil borings will be used to evaluate whether special procedures or precautions will be required for building construction.

2.1 LOCATION

The Omaha Shops are located at 9th and Webster Streets in Omaha, Nebraska. The site encompasses approximately 184 acres, lying immediately west of the Missouri River in the Missouri River flood plain (Figure 2-1). The Omaha Shops include various buildings and production support areas each having a function in past operations of the facility.

The Omaha Shops were in operation for approximately 100 years, with principal functions as a railroad fueling facility, repair shop, paint shop, and car body repair shop for UPRR's locomotive and car fleet.

The Construction Area occupies about 100 acres in the central part of the Omaha Shops. The Construction Area includes a portion of the Omaha Shops property that may be disturbed by future construction. Possible construction could include future buildings and relocation of a large sewer. Major existing buildings located within the limits of the Construction Area, as defined by this plan, include the Fabrication Shop, Print Shop, Wheel Shop, Car Shop, Steel Shop, and Wood Mill Building. The area also includes portions of the Traction Motor Shop and Power House. Portions of the Construction Area were identified and evaluated as operational areas in the Phase I Site Assessment (HDR, 1990).

The ground surface at the site is nearly level. Surface drainage is primarily to the east, toward the Missouri River. Surface elevation of the site is approximately 985 feet above mean sea level (msl). The Omaha Shops are about 10 to 15 feet above normal river stage.

2.2 GEOLOGY AND HYDROGEOLOGY

Shallow unconsolidated deposits at the site are characterized by fill and alluvium. Previous investigations at and near the site indicate that fill ranges in thickness from 1 to 9 feet with the thickest fill near the river channel. The fill consists of cinders, bricks, glass, metal, and gravel in a matrix of silt (HDR, 1990). Alluvial deposits consisting of interbedded clay, silt,

sand and gravel underlie the fill. The alluvial sequence lies above bedrock which is about 20 to 50 feet below the ground surface (UPRR, 1984).

Bedrock is of the Pennsylvanian age and consists of alternating beds of limestone and shale. Three different formations are normally encountered in this location; the Wyandotte Limestone, the Lane Shale, and the Iola Limestone. These formations are of the Kansas City group of the Missouri series (UPRR, 1984).

Shallow groundwater is encountered at the site at depths ranging from approximately 3 to 15 feet below ground surface. Groundwater appears to flow northeasterly, with a calculated hydraulic gradient in the direction of flow estimated to be about 0.01 feet per foot (HDR, 1990). The alluvial sediments are expected to have a low hydraulic conductivity with a range of 0.3 to 0.003 feet per day. Hydraulic recharge is likely from surface infiltration due to the porous characteristics of the surface fill materials (UPRR, 1984). Figure 2-2 shows the shallow potentiometric surface measured in March 1992.

2.3 PREVIOUS STUDIES AND INVESTIGATIONS

Studies and investigations previously completed at the Omaha Shops are briefly described below.

2.3.1 PCB Transformers

In 1987 and 1988 United States Pollution Control Inc. (USPCI) completed a PCB electrical transformer fluid survey at the Omaha Shops. According to the survey results, 57 transformers were identified as containing PCB fluids. Concentrations ranged from 0.3 ppm to 932 ppm PCBs. At the time of the survey, 12 of the 57 transformers were in service; three of the 12 transformers contained PCBs at concentrations greater than 240 ppm (241, 254, and 440 ppm), and the remaining nine transformers had PCB concentrations of less than 60 ppm (49, 48, 51, 56, 46, 52, 39, 48, 51 ppm). The remaining 45 transformers identified as containing PCB fluids were removed from service or disposed of by USPCI.

2.3.2 Asbestos Survey

SOS International (SOS) completed an asbestos survey of the Omaha Shops in 1988. SOS collected 14 samples of suspected asbestos-containing building materials (ACBM). Six of these samples tested positive for asbestos with concentrations ranging from 35% to 90% Chrysotile asbestos.

Investigation of outside steam line insulation included quantifying lengths of pipe and collecting ten samples. Five of the insulation samples contained asbestos. Examination of hot water line insulation included quantifying lengths of pipe and collecting one sample, which contained 90% Chrysotile asbestos.

The Power House pipe insulation and boiler area sampling involved the collection of two samples, both of which were found not to contain asbestos. A spray-applied material observed on the walls of Store No. 2 was suspected of containing asbestos, and one sample was collected. This sample was found not to contain asbestos.

2.3.3 Preliminary Site Assessment

USPCI completed a facility walk-through and historical records search for the Omaha Shops in 1988 (USPCI, 1988). Results of the survey identified a number of current and historical areas which were considered to be areas of potential environmental concern. These areas were incorporated into a follow-up site assessment by HDR as focal points for further investigation activities.

2.3.4 Diesel Fuel Recovery System

Floating petroleum product (diesel fuel) on the groundwater near the south end of the Omaha Shops was discovered during construction of the Abbott Drive overpass. In response to this situation, UPRR installed a diesel fuel recovery system in this area in 1988 (Terracon, 1988). A total of 13 recovery wells were installed at depths of approximately 27 to 28 feet. The system continues to operate, removing approximately 1,000 gallons of diesel fuel per month (Terracon, 1992).

2.3.5 Phase I Site Assessment

HDR Engineering, Inc. completed an environmental site assessment of the Omaha Shops in 1989 and 1990. Field investigations included hand auger borings, truck-mounted drill rig borings, monitoring well installation and sampling, and soil vapor analysis. The investigation identified 16 areas of possible contamination. Groundwater and soil contaminant levels were compared to selected maximum allowable levels to evaluate whether contaminant levels warranted further action.

W-C completed fieldwork for the Construction Area investigation between February 24, 1992 and March 4, 1992. Field activities were done under a site-specific Health and Safety Plan developed by W-C specifically for the project activities described in this section.

3.1 DRILLING AND SOIL SAMPLING

Soil borings drilled along the proposed centerline of the relocated sewer were advanced to a depth of 25 feet. Other borings were drilled to the water table. The borings were drilled using a CME Model 55 drill rig with 8-inch outside diameter (OD), 4.25-inch inside diameter (ID) hollow-stem augers (HSA). Soil samples were examined in the field and described according to the Unified Soil Classification System (USCS) by a W-C geologist. Geologic logs were completed for each boring and are provided in the Appendix.

Soil samples were collected using a stainless-steel split-spoon sampler at 2.5-foot intervals from the ground surface to the target depth. Recovered soil samples were field screened for potential volatile organic vapors. Soil samples for chemical analysis were collected from each of the borings in the sewer relocation corridor at depth intervals of 0 to 1.5 feet, 3 to 4.5 feet, 6 to 7.5 feet, the water table interface (estimated 10 to 11.5 feet), 15 to 16.5 feet, 20 to 21.5 feet, and 25 to 26.5 feet.

Recovered soil samples in the proposed building area were field screened for potential volatile organic vapors. Soil samples for chemical analysis were collected at depth intervals of 0 to 1.5 foot, 3 to 4.5 feet, 6 to 7.5 feet, and at the water table interface (estimated 10 to 11.5 feet).

3.1.1 Field Screening

Recovered soil samples from each boring were field screened to assess the presence or absence of organic vapors. A portion of each soil sample from each boring was placed in an 8-ounce glass container. The container was filled about one-half full with soil and the mouth

of the container was covered with aluminum foil and tightly capped. After allowing the sample to equilibrate for about 30 minutes, the headspace in the container was analyzed with an HNu photoionization detector (PID) by removing the cap and inserting the instrument probe through the foil liner. The headspace readings were recorded on the geologic logs.

3.1.2 Laboratory Analysis

Soil samples for chemical analysis were collected and placed in appropriate containers provided by National Environmental Testing (NET) Midwest, Inc. of Cedar Falls, Iowa immediately after sampling. The sample containers were labeled and stored in a chilled ice chest until delivery to NET. The samples were shipped via overnight courier to the laboratory. Chain-of-Custody forms were maintained between W-C and NET personnel to document the custody and delivery of samples. Laboratory analytical reports are not included in this report; however, they are maintained by UPRR in the project record file.

Soil samples from the proposed sewer relocation corridor were analyzed for the following parameters:

<u>Surface Sample (0 to 1.5 foot)</u>: Total metals, SVOCs, pesticides/PCBs, and asbestos. If the soil boring was located in a paved area, the sample was collected from the first foot underlying the pavement.

<u>Intermediate Sample (3 to 4.5 feet)</u>: Total metals (archived for possible analysis depending on analytical results from other samples)

<u>Intermediate Sample (6 to 7.5 feet)</u>: Total metals, VOCs, SVOCs, and pesticides/PCBs

Groundwater Interface Sample (10 to 11.5 feet): Total metals, VOCs, SVOCs, and TRPH

Intermediate Samples (15 to 16.5 feet, 20 to 21.5 feet, 25 to 26.5 feet): Total metals (archived from each of the three sampling intervals for possible analysis depending on analytical results from other sampling locations) and VOCs, SVOCs, and TRPH from the sampling interval exhibiting the highest field-screened volatile organics level and VOCs, SVOCs, and TRPH from the sampling interval below. If no volatile organic vapors were detected by field screening, VOCs, SVOCs, and TRPH samples were submitted only from the 15 to 16.5 feet sampling interval.

Soil samples from the proposed building area were analyzed for the following parameters:

<u>Surface Sample (0 to 1.5 feet)</u>: Total metals, SVOCs, pesticides/PCBs, and asbestos. If the soil boring was located in a paved area, the sample was collected from the first foot underlying the pavement.

<u>Intermediate Sample (3 to 4.5 feet)</u>: Total metals (archived for possible analysis depending on analytical results from other samples)

<u>Intermediate Sample (6 to 7.5 feet)</u>: Total metals, VOCs, SVOCs, and pesticides/PCBs

Groundwater Interface Sample (10 to 11.5 feet): Total metals, VOCs, SVOCs, and TRPH

The soil sample analytical results are discussed in Section 4.0 of this report.

3.2 DECONTAMINATION

Drilling equipment was decontaminated upon arrival at the site and between each boring using a hot-water, high-pressure cleaner. Sampling equipment was decontaminated between each sample using a detergent-potable water wash, potable water rinse, and distilled water rinse. The water generated by decontamination was field screened with an HNu PID for the presence of organic vapors. The results of decontamination water field screening were nondetect and the water was discharged on the ground and allowed to infiltrate or evaporate.

3.3 HEALTH AND SAFETY

Prior to the start of fieldwork, the Site Health and Safety Plan was reviewed by field personnel, and a site briefing was held. Following the briefing, field personnel signed a compliance agreement to the Site Health and Safety Plan.

Air in the breathing zone was monitored frequently during fieldwork using an HNu PID. No HNu levels above background were measured in the breathing zone during any of the fieldwork.

4.1 DISCUSSION OF ANALYTICAL RESULTS

The sampling and analyses, summarized in Table 4-1, included surface and subsurface soil samples from 19 soil boring locations. Soil sampling locations are shown on Figure 4-1. The analytical results for the soil samples are summarized in Table 4-2.

No VOCs were found in the soil samples collected at the Construction Area with the exception of toluene, tetrachloroethene (PCE), and methylene chloride. The concentration of both toluene (UPCA-SB14-0801) and PCE (UPCA-SB02-1101) were estimated values (flagged "J") of 2J μ g/kg. The reported methylene chloride concentrations (2J μ g/kg to 15 μ g/kg) are likely due to laboratory contamination.

The primary semi-VOCs found in soil samples are classified as polycyclic aromatic hydrocarbons (PAHs). The samples with the greatest concentrations of PAHs were from borings UPCA-SB09, UPCA-SB10, and UPCA-SB15. Other semi-VOCs reported were di-n-butylphthalate, di-n-octylphthalate, dibenzofuran, N-Nitrosodi-n-propylamine, and N-Nitrosodiphenylamine. Semi-VOCs detected and their concentration ranges are summarized in Table 4-3.

PAH concentrations ranged from 1 μ g/g to 34 μ g/g throughout the Construction Area. Total PAH concentrations ranged from 1.9 μ g/g at boring UPCA-SB02 to 48.8 μ g/g at boring UPCA-SB10.

Several pesticides and Aroclor 1260 (a PCB) were found in the Construction Area borings. Aroclor 1260 was found in samples UPCA-SB14-0001 and UPCA-SB16-0001 at concentrations of 330 μ g/kg and 440J μ g/kg, respectively. The most prevalent pesticide found was methoxychlor in ten samples ranging in concentration from 3.6J μ g/kg to 15 μ g/kg. Chlordane was detected in eight samples at concentrations ranging from 11JP μ g/kg to 550 μ g/kg. Chlorinated phenylic insecticides, DDT, DDE, and DDD were found in five samples, seven samples, and five samples, respectively. Concentrations of DDT ranged from

0.54JP μ g/kg to 12P μ g/kg, DDE ranged from 0.65JP μ g/kg to 28 μ g/kg, and DDD ranged from 1.5J μ g/kg to 18P μ g/kg.

Heptachlor epoxide was found in four samples ranging in concentration from 1.0JP μ g/kg to 17 μ g/kg. Endosulfan sulfate concentrations ranged from 1.2JP μ g/kg to 4.6JP μ g/kg in two samples. Delta BHC and endrin aldehyde were each detected in two samples at concentrations of 1.2JP μ g/kg to 1.4JP μ g/kg, and 3.6JP μ g/kg to 4.4J μ g/kg, respectively. Heptachlor, endrin, dieldrin, and aldrin were each detected in one sample at concentrations of 8.8P μ g/kg, 0.65J μ g/kg, 3.6JP μ g/kg, and 9.50 μ g/kg, respectively. Pesticides/PCBs detected and their concentration ranges are summarized in Table 4-3.

Eleven TPH detections were reported from five soil boring locations. The TPH concentrations ranged from 11 μ g/g to 3,840 μ g/g with the greatest TPH concentration being associated with sample number UPCA-SB01-0801.

Several metals were detected in the soil samples collected from the Construction Area. The metals detected and their concentration ranges are summarized below:

Aluminum	870-21,000 mg/kg
Antimony	39-59 mg/kg
Arsenic	2.7J-300 mg/kg
Barium	21-800 mg/kg
Beryllium	0.56-2.4 mg/kg
Cadmium	1.3-19 mg/kg
Calcium	1,500-170,000 mg/kg
Chromium	3.1-59 mg/kg
Cobalt	2.7-37 mg/kg
Copper	3.4-400 mg/kg
Iron	4,800-71,000 mg/kg
Lead	7.3-1,600 mg/kg
Magnesium	270-16,000 mg/kg
Manganese	77-800 mg/kg
Mercury	2.2 mg/kg
Nickel	2.9-89 mg/kg

Potassium	240-4,400 mg/kg
Selenium	0.6-5.6 mg/kg
Silver	1.2-6.7 mg/kg
Sodium	37-710 mg/kg
Vanadium	10-54 mg/kg
Zinc	20-1,600 mg/kg

4.2 DATA QUALITY

This section summarizes the results of the data quality review of the laboratory data generated for the Construction Area investigation. One hundred fifty soil samples were collected and submitted to NET Midwest for analysis. NET Cambridge was additionally utilized as a subcontracted laboratory to NET Midwest. The review was performed to assess whether the data are suitable for their intended use using applicable sections from the U.S. EPA guidance documents "National Functional Guidelines for Organic Data Review", June 1991 and "Laboratory Data Validation Functional Guidelines for Inorganic Analyses", June 1988.

Acceptance criteria were set forth in the NET QAPP for the Union Pacific Omaha Shops Project (January, 1992). Criteria examined during this review included:

- Holding times
- Matrix spike/Matrix spike duplicates (MS/MSD)
- Trip blank samples
- Field duplicate samples
- Laboratory QA/QC data including blanks and duplicates (where provided by laboratory)
- Quantitation limits

4.2.1 Holding Times

Holding times were defined as the maximum allowable time between sample collection and analysis and/or extraction, based on the analyte of interest, stability factors, and preservation methods. Allowable holding times were presented in the Work Plan (W-C 1992).

All samples were prepared (extracted) and analyzed within the appropriate holding times for all parameters including VOCs, semi-VOCs, pesticides and PCBs, TPH, and total metals.

No qualification of the data was necessary based on holding times.

4.2.2 Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were soil samples to which known concentrations of method-specific analytes were added by the laboratory. The MS/MSDs were collected through out the entire analytical procedure to assess matrix interference and long-term accuracy and precision of the analytical method on various matrices.

The measured recoveries of the spiked analytes in the MS and MSD samples were calculated and reported as percent recovery (%R). The relative percent difference (RPD) between the MS and the MSD was also determined.

Due to either poor laboratory performance or suspected matrix interference (as demonstrated by low percent recovery) and/or sample nonhomogeneity (as demonstrated by high RPD), the following samples were qualified as estimated "J".

Sample No.	Analyte	Reason
MS18-0801 (Comp)	Mercury and selenium results	Suspected low bias
MS18-0001 (Comp)	Copper and lead results	Suspected low bias
MS18-0001 (Comp)	Manganese result	Suspected high bias
SB09-0801 (Comp)	All SVOC results	Subject to sample variability
SB06-1101 (Comp)	Manganese results	Suspected low bias
SB01-0801 (Comp)	Arsenic and selenium results	Suspected low bias
SB10-1101 (Comp)	Mercury and selenium results	Suspected low bias
SB19-1101 (Comp)	Arsenic and Selenium results	Suspected low bias and subject to sample variability

Although manganese MS %R was exceptionally low for sample MS02-1601 (COMP), no qualification action was taken as the spike level was negligible in comparison to sample concentration. Two samples MS18-0801(GRAB) and MS01-0801(COMP)) for which MS/MSD analyses were requested on the Chain-of-Custody were not reported by the laboratory.

4.2.3 Trip Blank Samples

Two trip blank samples were analyzed for VOCs to check for procedural contamination, cross contamination, and laboratory contamination during shipment and storage of samples. Trip blank results were all nondetect; therefore, the associated data are usable as reported on the basis of the trip blanks.

4.2.4 Field Duplicate Samples

Field duplicate samples were analyzed to check for sampling and laboratory reproducibility. All field duplicate results were within acceptable criteria with the exception of two semi-VOC analytes for samples SB01-0001 (COMP) and FR01-0001 (COMP). Due to poor precision, N-nitrosodiphenylamine and N-nitrosodi-n-propylamine associated with the aforementioned samples were qualified as estimated and flagged "J".

4.2.5 Laboratory Control Samples

Laboratory control samples (LCS) were defined as QC samples originated and prepared by the analytical laboratory. These samples were used to assess method accuracy.

Some LCS data provided did not meet acceptable criteria. Due to low arsenic LCS recovery associated with SDG 92.1649, all arsenic nondetects were qualified as estimated "J" based on suspicion of low bias. Pesticide/PCB LCS results for SDG 92.1439 have recoveries of 15 percent and 143 percent for 4,4-DDD and 4,4-DDT, respectively. All associated samples were considered to be estimates and flagged "J" for analytes 4,4-DDD and 4,4-DDT, and are subject to low bias and high bias, respectively.

4.2.6 Method Blanks

For this project, a method blank was defined as a sample matrix that was as free of analytes as practical and contained the same reagents as used in the processing and analysis of the field samples. The blank was used to assess sample contamination as a result of laboratory operations in the preparation and analysis of the sample. Analytes found in method blanks were generally attributed to laboratory contamination or laboratory artifacts.

Analytes reported in samples at concentrations below five times (5x) the blank concentration [ten times (10x) for common laboratory contaminants as specified in the EPA Functional Guidelines] were considered to be laboratory artifacts. These analytes were qualified as nondetects (U) in the quantitation of the associated field sample analyses. Contaminants which were below the 10x or 5x blank concentration, but above the nominal quantitation or reporting limits, were also considered to be laboratory artifacts, and were qualified as "U" at the reported concentration. Common laboratory contaminants which were reported at levels greater than 10x the blank concentration and above the nominal quantitation or reporting limits were considered to be present in the sample, and no qualification was required.

All method blank results were nondetect with the exception of metals. Low levels of zinc, sodium, iron, calcium, tin, aluminum, and copper were detected in the blanks ranging from 0.0051 mg/L to 0.11 mg/L; however, these levels were negligible when compared to the levels detected in the associated samples. No data were qualified on the basis of method blanks.

4.2.7 Surrogate Compound Recoveries

Surrogate compounds were defined as compounds added to every blank, sample, and laboratory QA/QC sample when specified in the respective analytical method. These results were used to evaluate the accuracy of the analytical measurements on a sample-specific basis. Control limits for surrogate compound recoveries were presented in the QAPP.

One semi-VOC surrogate result for sample SB03-0801 (COMP) was less than 10 percent; however, based on professional judgment, no action was taken. Semi-VOC surrogate recoveries associated with sample SB03-1601 (COMP) were low, but due to elevated

reporting limits, no qualification was judged necessary. For SDG 92.1649, no semi-VOC surrogate results were available due to a laboratory error. Due to high surrogate recovery for volatile sample SB06-0801 (GRAB), all positive results associated with this sample were considered estimated and flagged "J". Pesticide/PCB surrogate results associated with samples SB15-0301 (COMP), SB08-0301 (COMP), SB16-0001 (COMP), and SB16-0001 (COMP) were subject to high bias; therefore, the Aroclor 1260 result associated with sample SB16-0001 (COMP) was considered estimated and flagged "J", subject to high bias. No other action was taken because all other results were nondetect.

4.2.8 Quantitation Limits

Nominal values for quantitation limits were obtained for all analyses.

4.2.9 Summary

This review indicated that the overall data quality was good. The data are usable for their intended purpose, as qualified where appropriate.

TABLE 4-1 CONSTRUCTION AREA SOIL SAMPLING SUMMARY PHASE II SITE ASSESSMENT UPRR OMAHA SHOPS

	Sample Identification						Para	meters		
Drilling/Sampling Location		Sample Sample Depth (ft) Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments	
SB01	UPCA-SB01-0001	1-2	3-3-92		X	X		X	X	
	UPCA-FR01-0001	1-2	3-3-92		X					Duplicate
	UPCA-SB01-0301	3	3-4-92					X		Archived
	UPCA-SB01-0601	4-6	3-4-92				X			
	UPCA-SB01-0801	6-8	3-4-92	x	X	X	X	X		
	UPCA-MS01-0801	6-8	3-4-92					X		MS
	UPCA-FR01-0801	6-8	3-4-92	x						Duplicate
	UPCA-SB01-1101	9-11	3-4-92	x	X		X	X		
	UPCA-FR01-1101	9-11	3-4-92				X			Duplicate
	UPCA-SB01-1601	14-16	3-4-92	X	X		X	X		
	UPCA-FR01-1601	14-16	3-4-92					X		Duplicate
	UPCA-SB01-2101	19-21	3-4-92					X		Archived
	UPCA-SB01-2501	24-24.5	3-4-92					X		Archived
SB02	UPCA-SB02-0001	1-2	3-3-92		x	х		х	Х	
	UPCA-SB02-0501	3-5	3-3-92				X	X		Metals Archiv
	UPCA-SB02-0901	7-9	3-3-92	x	X		X	X		
	UPCA-SB02-1101	9-11	3-3-92	\mathbf{X}^{-}	X		X	X		
	UPCA-MS02-1101	9-11	3-3-92	x						MS
	UPCA-MX02-1101	9-11	3-3-92	x						MSD
	UPCA-SB02-1601	14-16	3-3-92	х	X		X	X		

91204\204N&E.t1/md UPRR Omaha Shops Construction Area Report

TABLE 4-1
CONSTRUCTION AREA SOIL SAMPLING SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

					Account faller during the		Para	ameters		
Drilling/Sampling Location	Sample Identification	Sample Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB02	UPCA-MS02-1601	14-16	3-3-92				,	Х		MS
	UPCA-SB02-2101	19-21	3-3-92					X		Archived
	UPCA-SB02-2301	22-22.5	3-3-92					X		Archived
SB03	UPCA-SB03-0001	1-2	3-3-92		X	X		X	X	
	UPCA-FR03-0001	1-2	3-3-92					X		Duplicate
	UPCA-SB03-0501	3-5	3-3-92					X		Archived
	UPCA-SB03-0801	6-8	3-3-92	x	X	X		X		
	UPCA-FR03-0001	6-8	3-3-92			X				Duplicate
	UPCA-SB03-1101	9-11	3-3-92	x	X		X	X		
	UPCA-SB03-1601	14-16	3-3-92	X	X		X	X		Metals Archived
	UPCA-SB03-2101	19-21	3-3-92					X		Archived
SB04	UPCA-SB04-0001	0-1	2-27-92		X	X		X	X	
	UPCA-SB04-0001	0-1	2-27-92		X	X				MS/MSD
	UPCA-SB04-0501	3-5	2-27-92					X		Archived
	UPCA-SB04-0801	6-8	2-27-92	X	X	X		X		
	UPCA-SB04-1101	9-11	2-27-92	X	X	X		X		
	UPCA-SB04-1601	14-16	2-27-92	X	X		X	X		Metals Archived

TABLE 4-1 CONSTRUCTION AREA SOIL SAMPLING SUMMARY PHASE II SITE ASSESSMENT UPRR OMAHA SHOPS

Orilling/Sampling Location	Sample Identification	Sample			Parameters					
		Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB04	UPCA-SB04-2101	19-21	2-27-92					X	90	Archived
	UPCA-SB04-2601	24-26	2-27-92					X		Archived
anas	TIDGA CDOS 0001	0.1	2-27-92		x	X		V	37	
SB05	UPCA-SB05-0001	0-1			Х	Х		X	X	
	UPCA-SB05-0501	3-5	2-27-92					X		Archived
	UPCA-SB05-0801	6-8	2-27-92	X	X	X		X		
	UPCA-SB05-1101	9-11	2-27-92	X	X		X	X		
	UPCA-SB05-1601	14-16	2-27-92	X	X		X	X		Metals Archived
	UPCA-SB05-2101	19-21	2-27-92					X		Archived
	UPCA-SB05-2601	24-26	2-27-92					X		Archived
SB06	UPCA-SB06-0001	0-1	3-2-92		X	x		х	X	
	UPCA-FR06-0001	0-1	3-2-92						X	Duplicate
	UPCA-SB06-0501	3-5	3-2-92				X	X		Metals Archived
	UPCA-SB06-0801	6-8	3-2-92	X	X		X	X		
	UPCA-MS06-0801	6-8	3-2-92		X					MS
	UPCA-MX06-0801	6-8	3-2-92		X					MSD
	UPCA-SB06-1101	9-11	3-2-92	X	X		X	X		
	UPCA-FR06-1101	9-11	3-2-92					X		Duplicate
	UPCA-MS06-1101	9-11	3-2-92					X		MS

91204\204N&E.t1/md UPRR Omaha Shops Construction Area Report

TABLE 4-1
CONSTRUCTION AREA SOIL SAMPLING SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

		х					Para	ameters		
Drilling/Sampling Location	Sample Identification	Sample Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB07	UPCA-SB07-0001	1-3	3-2-92		х	X		X	X	
	UPCA-FR07-0001	1-3	3-2-92			X				
	UPCA-SB07-0501	3-5	3-2-92					X		Archived
	UPCA-SB07-0801	6-8	3-2-92	X	X	X		X		
	UPCA-MS07-0801	6-8	3-2-92	X						MS
	UPCA-MX07-0801	6-8	3-2-92	X						MSD
	UPCA-SB07-1101	9-11	3-2-92	X	X		X	X		
	UPCA-FR07-1101	9-11	3-2-91	X						Duplicate
	10 00		*							
SB08	UPCA-SB08-0301	1-3	2-26-92		X	X		X	X	
	UPCA-SB08-0501	3-5	2-26-92					X		Archived
	UPCA-SB08-0801	6-8	2-26-92	X	X	X		X		
	UPCA-SB08-1101	9-11	2-26-92	X	X		X	X		
SB09	UPCA-SB09-0001	1-2	3-2-92		X	X		X	X	
	UPCA-SB09-0501	3-5	3-2-92					X		Archived
	UPCA-SB09-0801	6-8	3-2-92	X	X	X		X		
	UPCA-MS09-0801	6-8	3-2-92		X					MS
	UPCA-MX09-0801	6-8	3-2-92		X					MSD

TABLE 4-1
CONSTRUCTION AREA SOIL SAMPLING SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

				Parameters						
Drilling/Sampling Location	Sample Identification	Sample Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB09	UPCA-SB09-1101	9-11	3-2-92		X		X	X		
	UPCA-FR09-1101	9-11	3-2-92		X		X			
SB10	UPCA-SB10-0301	2-3	2-26-92		X	X		X	X	
	UPCA-SB10-0601	4-6	2-26-92				X	X		Metals Archived
	UPCA-SB10-0901	7-9	2-26-92	X	X	X		X		
	UPCA-SB10-1101	9-11	2-26-92	X	X		X	X		
SB11	UPCA-SB11-0001	0-1	2-28-92		X	X		X	X	
	UPCA-SB11-0501	3-5	2-28-92					X		Archived
	UPCA-SB11-0801	6-8	2-28-92	X	X	X		X		
	UPCA-SB11-1101	9-11	2-28-92	X	X		X	X		
SB12	UPCA-SB12-0301	1-3	2-26-92		X	X		X	X	
	UPCA-SB12-0501	3-5	2-26-92					X		Archived
	UPCA-SB12-0801	6-8	2-26-92	X	X	X		X		
	UPCA-SB12-1101	9-11	2-26-92	X	X		X	X		
SB13	UPCA-SB13-0001	0-1	3-2-92		X	X		X	X	
	UPCA-SB13-0501	3-5	3-2-92					X		Archived

91204\204N&E.t1/md UPRR Omaha Shops Construction Area Report

TABLE 4-1
CONSTRUCTION AREA SOIL SAMPLING SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

							Para	meters		
Drilling/Sampling Location	Sample Identification	Sample Depth (ft)		VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB13	UPCA-SB13-0801	6-8	3-2-92	X						
	UPCA-SB13-1101	9-11	3-2-92	X	X		X	X		
	UPCA-SB13-1601	14-16	3-2-92	x	X		X	X		Metals Archived
	UPCA-SB13-2101	19-21	3-2-92					X		Archived
	UPCA-SB13-2501	24-26	3-2-92					X		Archived
SB14	UPCA-SB14-0001	0-1	2-28-92		x	х		X	х	
	UPCA-MS14-0001	0-1	2-28-92			x				MS
	UPCA-MX14-0001	0-1	2-28-92			x				MSD
	UPCA-SB14-0501	3-5	2-28-92					X		Archived
	UPCA-SB14-0801	6-8	2-28-92	X	X	Χ -		X		
	UPCA-FR14-0801	6-8	2-28-92	X				X		Duplicate
	UPCA-SB14-1101	9-11	2-28-92	X	X		X	x		
SB15	UPCA-SB15-0001	0-2	2-26-92		х	x		x	х	
	UPCA-SB15-0501	3-5	2-26-92					x		Archived
	UPCA-SB15-0801	6-8	2-26-92	x	x	x		x		
	UPCA-SB15-1101	9-11	2-26-92	x	x		х	x		

TABLE 4-1
CONSTRUCTION AREA SOIL SAMPLING SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

Drilling/Sampling Location	Sample Identification						Para	ameters		
		Sample Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments
SB16	UPCA-SB16-0001	0-1	2-28-92		Х	X .		x	X	
	UPCA-FR16-0001	0-1	2-28-92		X					Duplicate
	UPCA-SB16-0501	3-5	2-28-92					X		Archived
	UPCA-SB16-0801	6-8	2-28-92	X	X	X		X		
	UPCA-MS16-0801	6-8	2-28-92		X					MS
	UPCA-MX16-0801	6-8	2-28-92		X					MSD
	UPCA-SB16-1101	9-11	2-28-92	X	X		X	X		
SB17	UPCA-SB17-0501	2-4.5	2-25-92		X	X		X	X	
	UPCA-SB17-0801	6-8	2-25-92	X	X	X	X	X		
	UPCA-SB17-1101	9-11	2-25-92	X	X		. x	X		
SB18	UPCA-SB18-0001	0-1	2-28-92		X	X		X	X	
	UPCA-MS18-0001	0-1	2-28-92					X		MS
	UPCA-SB18-0501	3-5	2-28-92					X		Archived
	UPCA-SB18-0801	6-8	2-28-92	x	X	X		X		
	UPCA-MS18-0801	6-8	2-28-92	x						MS
	UPCA-MX18-0801	6-8	2-28-92	X						MSD
	UPCA-SB18-1101	9-11	2-28-92	X	X		X	X		

				Parameters							
Drilling/Sampling Location	Sample Identification	Sample Depth (ft)	Sample Date	VOCs1	Semi- VOCs ²	Pest/ PCBs ³	TPH⁴	Total Metals	Asbestos	Comments	
SB19	UPCA-SB19-0001	0-1	2-25-92		x	х		X	X		
	UPCA-SB19-0501	3-4.5	2-25-92					X		Archived	
	UPCA-SB19-1101	9.5-11.5	2-25-92	X	X		X	X			

Volatile organic compounds Semivolatile organic compounds

Pesticides/polychlorinated biphenyls

Total recoverable petroleum hydrocarbons

	Units	UPCA-SB01-0001	UPCA-SB01-0601	UPCA-SB01-0801	UPCA-SB01-1101	UPCA-SB01-1601
VOLATILE ORGANICS						
Methylene Chloride	μ g/kg	-		6 U	6 U	7 U
Tetrachloroethene	μ g/kg	-	-	6 U	6 U	7 U
Toluene	μ g/kg	-	-	6 U	6 U	7 U
SEMIVOLATILE ORGANICS						
Acenaphthene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Anthracene	μg/g	15 U	-	4 U	4.5 U	2 U
Benzo(a)anthracene	μg/g	15 U	-	4 U	4.5 U	2 U
Benzo(a)pyrene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Benzo(b)fluoranthene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Benzo(ghi)perylene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Benzo(k)fluoranthene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Chrysene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
Di-n-butylphthalate	μg/g	15 U	-	4 U	4.5 U	2 U
Di-n-octylphthalate	μg/g	15 U	-	4 U	4.5 U	2 U
Fluoranthene	μg/g	15 U	-	4 U	4.5 U	2 U
Fluorene	$\mu g/g$	15 U	-	4 U	4.5 U	2 U
N-Nitrosodiphenylamine	μg/g	23 J	-	4 U	4.5 U	2 U
N-Nitrosodi-n-propylamine	μg/g	38 J	-	4 U	4.5 U	2 U
Phenanthrene	μg/g	34	-	4 U	4.5 U	2 U
Pyrene	μg/g	15 U	-	4 U	4.5 U	2 U
PESTICIDES/PCBs						
4,4'-DDD	μg/kg	6 U	-	7 U	-	
4,4'-DDE	μg/kg	6 U		7 U	-	
4,4,'-DDT	μg/kg	6 U	-	7 U		-
Aldrin	μg/kg	6 U	-	7 U		
Alpha-BHC	μg/kg	6 U	-	7 U	-	
Chlordane	μg/kg	6 U		7 U	-	-
Delta-BHC	μg/kg	6 U		7 U		-
Endosulfan sulfate	μg/kg	6 U	-	7 U		-
Endrin Aldehyde	μg/kg	6 U	*	7 U	-	-
Heptachloft	μg/kg	6 U		7 U	-	
Heptachlor epoxide	μg/kg	6 U	-	7 U	-	-
Methoxychlor	μg/kg	6 U	-	7 U		-
PETROLEUM		Ny 1000				
HYDROCARBONS						
TPH '	μg/g		1540	3840	1600	281

	Units	UPCA-SB01-0001	UPCA-SB01-0601	UPCA-SB01-0801	UPCA-SB01-1101	UPCA-SB01-160
METALS						
Aluminum (A1)	mg/kg	7400	-	9700	12000	18000
Antimony (Sb)	mg/kg	24 U		28 U	28 U	29 U
Arsenic (As)	mg/kg	16	-	6.8	4.5	12
Barium (Ba)	mg/kg	160		180	270	250
Beryllium (Be)	mg/kg	0.59		0.57	0.64	0.78
Cadmium (Cd)	mg/kg	1 U	-	1 U	1.4 U	2 U
Calcium (Ca)	mg/kg	3900	-	7200	22000	18000
Chromium (Cr)	mg/kg	17		15	17	22
Cobalt (Co)	mg/kg	9.5		11	11	12
Copper (Cu)	mg/kg	220		23	22	24
Iron (Fe)	mg/kg	40000	-	16000	22000	23000
Lead (Pb)	mg/kg	320	-	50	17	16
Magnesium (Mg)	mg/kg	1800	-	4500	8200	8100
Manganese (Mn)	mg/kg	190	-	290	1100	540
Mercury (Hg)	mg/kg	2 U	-	2 U	2 U	2 U
Nickel (Ni)	mg/kg	20	-	21	20	24
Potassium (K)	mg/kg	1200	-	1700	1500	2300
Selenium (Se)	mg/kg	0.6		1 U	0.5 U	1 U
Silver (Ag)	mg/kg	1 U	-	1 U	1.4 U	2 U
Sodium (Na)	mg/kg	920	-	1300	1200	880
Thallium (Tl)	mg/kg	10 U	-	10 U	10 U	10 U
Vanadium (V)	mg/kg	22	-	26	33	42
Zinc (Zn)	mg/kg	220	-	62	73	79
ASBESTOS						
Chrysotile	%	1 U		-	-	

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

·	Units	UPCA-SB02-0001	UPCA-SB02-0501	UPCA-SB02-0901	UPCA-SB02-1101	UPCA-SB02-1601
VOLATILE ORGANICS						
Methylene Chloride	μg/kg	-	-	6 U	2 J	7 U
Tetrachloroethene	μg/kg	-	-	6 U	2 J	7 U
Toluene	μ g/kg	-	-	6 U	7 U	7 U
SEMIVOLATILE ORGANICS						
Acenaphthene	μg/g	1 U	-	1 U	1 U	2.5 U
Anthracene	$\mu g/g$	1 U		1 U	1 U	2.5 U
Benzo(a)anthracene	$\mu g/g$	1 U	-	1 U	1 U	2.5 U
Benzo(a)pyrene	$\mu g/g$	1 U	-	1 U	1 U	2.5 U
Benzo(b)fluoranthene	μg/g	1 U	-	1 U	1 U	2.5 U
Benzo(ghi)perylene	$\mu g/g$	1 U	-	1 U	1 U	2.5 U
Benzo(k)fluoranthene	μg/g	1 U	-	1 U	1 U	2.5 U
Chrysene	μg/g	1 U	-	1 U	1 U	2.5 U
Di-n-butylphthalate	μg/g	4.1	-	1 U	1 U	2.6
Di-n-octylphthalate	μg/g	1 U	-	1 U	1 U	2.5 U
Fluoranthene	μg/g	1.9	-	1 U	1 U	2.5 U
Fluorene	μg/g	1 U	-	1 U	1 U	2.5 U
N-Nitrosodiphenylamine	μg/g	1 U	-	1 U	1 U	2.5 U
N-Nitrosodi-n-propylamine	$\mu g/g$	1 U	-	1 U	1 U	2.5 U
Phenanthrene	μg/g	1 U	-	1 U	1 U	2.5 U
Pyrene	$\mu g/g$	1 U	-	1 U	1 U	2.5 U
PESTICIDES/PCBs						
4,4'-DDD	μg/kg	5 U	-	40 U	-	-
4,4'-DDE	μg/kg	0.65 JP	-	40 U	-	-
4,4'-DDT	μg/kg	5 U		40 U	-	-
Aldrin	μg/kg	5 U	-	40 U	-	-
Alpha-BHC	μ g/kg	5 U		40 U	-	-
Chlordane	μg/kg	50 U	-	400 U	-	-
Delta-BHC	μg/kg	5 U	-	40 U	-	-
Endosulfan sulfate	μg/kg	5 U	-	40 U	-	-
Endrin Aldehyde	μg/kg	5 U	-	40 U	-	-
Heptachlor	μg/kg	5 U	-	40 U	-	-
Heptachlor epoxide	μg/kg	5 U	-	40 U	-	-
Methoxychlor	μg/kg	11	-	40 U	-	-
PETROLEUM						
HYDROCARBONS		10 **	1.00		10 **	10.77
TPH	$\mu g/g$	10 U	163	17	10 U	10 U

	Units	UPCA-SB02-0001	UPCA-SB02-0501	UPCA-SB02-0901	UPCA-SB02-1101	UPCA-SB02-1601
METALS						
Aluminum (A1)	mg/kg	7200		14000	20000	21000
Antimony (Sb)	mg/kg	23 U	-	29 U	29 U	30 U
Arsenic (As)	mg/kg	7.3	-	4.4	3.5	9.7
Barium (Ba)	mg/kg	150	-	230	250	250
Beryllium (Be)	mg/kg	0.66	-	0.72	0.79	0.92
Cadmium (Cd)	mg/kg	1.1 U	-	1.5 U	1.5 U	13
Calcium (Ca)	mg/kg	8500	-	16000	20000	18000
Chromium (Cr)	mg/kg	11	-	20	25	29
Cobalt (Co)	mg/kg	7.8	-	13	12	18
Copper (Cu)	mg/kg	270	-	28	24	28
Iron (Fe)	mg/kg	27000		23000	24000	36000
Lead (Pb)	mg/kg	320	-	18	21	21
Magnesium (Mg)	mg/kg	1400	-	7400	7000	7900
Manganese (Mn)	mg/kg	240	-	570	690	740
Mercury (Hg)	mg/kg	2 U	-	2 U	2 U	2 U
Nickel (Ni)	mg/kg	17	-	25	24	36
Potassium (K)	mg/kg	560	-	1900	2700	4400
Selenium (Se)	mg/kg	0.5 U	-	0.5 U	0.5 U	0.5 U
Silver (Ag)	mg/kg	1.1 U	-	1.5 U	1.5 U	3.8
Sodium (Na)	mg/kg	710	-	550	580	250
Thallium (Tl)	mg/kg	10 U	-	10 U	10 U	10 U
Vanadium (V)	mg/kg	15	-	36	47	50
Zinc (Zn)	mg/kg	170	-	87	87	90
ASBESTOS						
Chrysotile	%	2	-	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

⁼ Not analyzed

*	Units	UPCA-SB03-0001	UPCA-SB03-0801	UPCA-SB03-1101	UPCA-SB03-1101
VOLATILE ORGANICS					
Methylene Chloride	μg/kg	-	6 U	3 J	3 J
Tetrachloroethene	μg/kg	-	6 U	7 U	7 U
Toluene	μg/kg	-	6 U	7 U	7 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Anthracene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Benzo(a)anthracene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Benzo(a)pyrene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Benzo(b)fluoranthene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Benzo(ghi)perylene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Benzo(k)fluoranthene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Chrysene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Di-n-butylph thalate	$\mu g/g$	2 U	3.4	1 U	17
Di-n-octylphthalate	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Fluoranthene	μg/g	2.1	2.3 U	1 U	9.8 U
Fluorene	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
N-Nitrosodiphenylamine	μg/g	2 U	2.3 U	1 U	9.8 U
N-Nitrosodi-n-propylamine	$\mu g/g$	2 U	2.3 U	1 U	9.8 U
Phenanthrene	μg/g	2.1	2.3 U	1 U	9.8 U
Pyrene	μg/g	2 U	2.3 U	1 U	9.8 U
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	7.8 P	6.2	7 U	-
4,4'-DDE	μg/kg	23 P	17	7 U	-
4,4'-DDT	μg/kg	8.3 P	2.9 JP	7 U	-
Aldrin	μg/kg	6 U	6 U	7 U	-
Alpha-BHC	μg/kg	2.8	6 U	7 U	-
Chlordane	μg/kg	42	11 JP	70 U	-
Delta-BHC	μg/kg	1.2 JP	1.4 JP	7 U	-
Endosulfan sulfate	μg/kg	4.6 JP	1.2 JP	7 U	-
Endrin Aldehyde	μg/kg	4.4 JP	6 U	7 U	-
Heptachlor	μg/kg	6 U	6 U	7 U	-
Heptachlor epoxide	μg/kg	1.0 JP	6.8	7 U	-
Methoxychlor	μg/kg	6 U	9	7 U	-
PETROLEUM HYDROCARBONS					
ТРН	μg/g	10 U	10 U		-

	Units	UPCA-SB03-0001	UPCA-SB03-0801	UPCA-SB03-1101	UPCA-SB03-1101
METALS					
Aluminum (A1)	mg/kg	5100	8500	18000	-
Antimony (Sb)	mg/kg	25 U	26 U	28 U	-
Arsenic (As)	mg/kg	48	5.2	2.9	-
Barium (Ba)	mg/kg	580	750	260	-
Beryllium (Be)	mg/kg	1.0	1.8	0.78	-
Cadmium (Cd)	mg/kg	1.3 U	1.3 U	1.4 U	
Calcium (Ca)	mg/kg	41000	55000	21000	-
Chromium (Cr)	mg/kg	56	59	24	-
Cobalt (Co)	mg/kg	14	17	12	-
Copper (Cu)	mg/kg	330	340	26	-
Iron (Fe)	mg/kg	56000	71000	23000	-
Lead (Pb)	mg/kg	1600	39	19	-
Magnesium (Mg)	mg/kg	5200	5900	8200	•
Manganese (Mn)	mg/kg	430	520	800	-
Mercury (Hg)	mg/kg	2 U	2 U	2 U *	-
Nickel (Ni)	mg/kg	67	57	26	-
Potassium (K)	mg/kg	260	380	2400	-
Selenium (Se)	mg/kg	0.5 U	0.5 U	0.5 U	-
Silver (Ag)	mg/kg	1.7	1.3 U	1.4 U	-
Sodium (Na)	mg/kg	260	490	340	-
Thallium (TI)	mg/kg	10 U	10 U	10 U	-
Vanadium (V)	mg/kg	20	31	44	-
Zinc (Zn)	mg/kg	720	890	83	-
ASBESTOS					
Chrysotile	%	2	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB04-0001	UPCA-SB04-0801	UPCA-SB04-1101	UPCA-SB04-1601
VOLATILE ORGANICS				-	
Methylene Chloride	μg/kg		6 U	7 U	8 U
Tetrachloroethene	μg/kg	•	6 U	7 U	8 U
Toluene	μg/kg	-	6 U	7 U	8 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Anthracene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Benzo(b)fluoranthene	μg/g	2.1 U	1 U	1 U	1 U
Benzo(ghi)perylene	μg/g	2.1 U	1 U	1 U	1 U
Benzo(k)fluoranthene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Chrysene	μg/g	2.1 U	1 U	1 U	1 U
Di-n-butylphthalate	μg/g	2.1 U	1 U	1 U	1 U
Di-n-octylphthalate	$\mu g/g$	2.1 U	1 U	1.1	1 U
Fluoranthene	$\mu g/g$	2.1 U	1 U	1 U	1 U
Fluorene	μg/g	2.1 U	1 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	2.1 U	1 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	2.1 U	1 U	1 U	1 U
Phenanthrene	μg/g	2.1 U	1 U	1 U	1 U
Pyrene	μg/g	2.1 U	1 U	1 U	1 U
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	6 U	7 U	-	-
4,4'-DDE	μg/kg	6 U	7 U	-	-
4,4'-DDT	μg/kg	6 U	7 U	-	-
Aldrin	μg/kg	9.50	7 U	-	-
Alpha-BHC	μg/kg	6 U	7 U	-	-
Chlordane	μg/kg	60 U	70 U	-	-
Delta-BHC	μg/kg	6 U	7 U	-	-
Endosulfan sulfate	μg/kg	6 U	7 U	-	
Endrin Aldehyde	μg/kg	6 U	7 U	-	-
Heptachlor	μg/kg	6 U	7 U	-	- '
Heptachlor epoxide	μg/kg	8	7 U	*	-
Methoxychlor	μg/kg	15	7 U	-	-
PETROLEUM HYDROCARBONS					
ТРН	μg/g		-	10 U	11
	MP 8				* *

	Units	UPCA-SB04-0001	UPCA-SB04-0801	UPCA-SB04-1101	UPCA-SB04-1601
METALS					
Aluminum (A1)	mg/kg	8200	14000	5100	-
Antimony (Sb)	mg/kg	24 U	27 U	28 U	-
Arsenic (As)	mg/kg	12	34	7.8	-
Barium (Ba)	mg/kg	800	300	270	-
Beryllium (Be)	mg/kg	2.4	0.66	0.56	-
Cadmium (Cd)	mg/kg	1.2 U	1.4 U	1.3 U	-
Calcium (Ca)	mg/kg	25000	6500	9100	-
Chromium (Cr)	mg/kg	31	22	20	-
Cobalt (Co)	mg/kg	8.2	19	12	-
Copper (Cu)	mg/kg	87	32	35	-
Iron (Fe)	mg/kg	39000	20000	16000	-
Lead (Pb)	mg/kg	200	240	16	-
Magnesium (Mg)	mg/kg	2100	5900	5800	-
Manganese (Mn)	mg/kg	270	420	440	-
Mercury (Hg)	mg/kg	2 U	2 U	2 U	-
Nickel (Ni)	mg/kg	15	31	23	-
Potassium (K)	mg/kg	540	1900	1900	-
Selenium (Se)	mg/kg	0.5 U	0.6 U	0.5 U	-
Silver (Ag)	mg/kg	1.2 U	1.4 U	1.3 U	-
Sodium (Na)	mg/kg	380	300	400	-
Thallium (Tl)	mg/kg	10 U	10 U	10 U	-
Vanadium (V)	mg/kg	30	44	38	-
Zinc (Zn)	mg/kg	170	98	92	-
ASBESTOS					
Chrysotile	%	1 U	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB05-0001	UPCA-SB05-0801	UPCA-SB05-1101	UPCA-SB05-1601
VOLATILE ORGANICS					
Methylene Chloride	μg/kg		7 U	3 J	7 U
Tetrachloroethene	μg/kg		7 U	7 U	7 U
Toluene	$\mu g/kg$		7 U	7 U	7 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	$\mu g/g$	1 U	1 U	1 U	1 U
Anthracene	$\mu g/g$	1 U	1 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1 U	1 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1 U	1 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1 U	1 U	1 U	1 U
Benzo(ghi)perylene	μg/g	1 U	1 U	1 U	1 U
Benzo(k)fluoranthene	μg/g	1 U	1 U	1 U	1 U
Chrysene	μg/g	1	1 U	1 U	1 U
Di-n-butylphthalate	$\mu g/g$	1 U	1 U	1 U	1 U
Di-n-octylphthalate	$\mu g/g$	1 U	1 U	1 U	1 U
Fluoranthene	μg/g	2.3	1 U	1 U	1 U
Fluorene	μg/g	1 U	1 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	1 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	1 U	1 U	1 U
Phenanthrene	μg/g	1.7	1 U	1 U	1 U
Pyrene	μg/g	2.1	1 U	1 U	1 U
PESTICIDES/PCBs		Mile Carlotte III			
4,4'-DDD	μg/kg	6 U	6 U		-
4,4'-DDE	μg/kg	6 U	6 U	-	-
4,4'-DDT	μg/kg	6 U	6 U	-	-
Aldrin	μg/kg	6 U	6 U		-
Alpha-BHC	μg/kg	6 U	6 U	-	-
Chlordane	μg/kg	60 U	60 U		-
Delta-BHC	μg/kg	6 U	6 U		
Endosulfan sulfate	μg/kg	6 U	6 U		-
Endrin Aldehyde	μg/kg	6 U	6 U		
Heptachlor	μg/kg	6 U	6 U		-
Heptachlor epoxide	μg/kg	6 U	6 U		-
Methoxychlor	μg/kg	12	12	-	-
PETROLEUM					
HYDROCARBONS				10 **	40.44
TPH	$\mu g/g$	-	-	10 U	10 U

	Units	UPCA-SB05-0001	UPCA-SB05-0801	UPCA-SB05-1101	UPCA-SB05-1601
METALS			*		
Aluminum (A1)	mg/kg	7500	13000	16000	-
Antimony (Sb)	mg/kg	25 U	26 U	29 U	-
Arsenic (As)	mg/kg	9.6	13	6.9	-
Barium (Ba)	mg/kg	270	260	290	-
Beryllium (Be)	mg/kg	1.7	0.61	0.72	-
Cadmium (Cd)	mg/kg	1.3 U	1.3 U	1.5 U	-
Calcium (Ca)	mg/kg	22000	11000	14000	-
Chromium (Cr)	mg/kg	9.5	19	21	-
Cobalt (Co)	mg/kg	14	11	13	-
Copper (Cu)	mg/kg	370	31	25	-
Iron (Fe)	mg/kg	21000	19000	22000	-
Lead (Pb)	mg/kg	170	140	32	=
Magnesium (Mg)	mg/kg	2100	6300	7500	-
Manganese (Mn)	mg/kg	340	770	640	-
Mercury (Hg)	mg/kg	2 U	2 U	2 U	F 32
Nickel (Ni)	mg/kg	11	23	26	-
Potassium (K)	mg/kg	640	1900	2400	•
Selenium (Se)	mg/kg	0.5 U	0.5 U	0.5 U	-
Silver (Ag)	mg/kg	1.3 U	1.3 U	1.5 U	-
Sodium (Na)	mg/kg	530	270	500	-
Thallium (TI)	mg/kg	10 U	10 U	10 U	-
Vanadium (V)	mg/kg	22	37	40	
Zinc (Zn)	mg/kg	1600	110	87	-
ASBESTOS					
Chrysotile	%	1 U		-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB06-0001	UPCA-SB06-0501	UPCA-SB06-0801	UPCA-SB06-1101
VOLATILE ORGANICS					
Methylene Chloride	μg/kg		-	4 J	3 J
Tetrachloroethene	μ g/kg		-	7 U	7 U
Toluene	μ g/kg		-	7 U	7 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	$\mu g/g$	1 U	-	2.3 U	1 U
Anthracene	$\mu g/g$	1 U	-	2.3 U	1 U
Benzo(a)anthracene	μg/g	1 U	-	2.3 U	1 U
Benzo(a)pyrene	$\mu g/g$	1 U	-	2.3 U	1 U
Benzo(b)fluoranthene	μg/g	1 U	-	2.3 U	1 U
Benzo(ghi)perylene	μg/g	1 U	-	2.3 U	1 U
Benzo(k)fluoranthene	μg/g	1 U	-	2.3 U	1 U
Chrysene	$\mu g/g$	1 U		2.3 U	1 U
Di-n-butylphthalate	$\mu g/g$	1 U		2.3 U	1 U
Di-n-octylphthalate	μg/g	1 U	-	2.3 U	1 U
Fluoranthene	μg/g	1 U	-	2.3 U	1 U
Fluorene	μg/g	1 U	-	2.3 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	-	2.3 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	-	2.3 U	1 U
Phenanthrene	μg/g	1 U	-	2.3 U	1 U
Pyrene	μg/g	1 U	-	2.3 U	1 U
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	18 P		7 U	
4,4'-DDE	μg/kg	28	-	7 U	
4,4'-DDT	μg/kg	12 P		7 U	
Aldrin	μg/kg	6 U	_	7 U	
Alpha-BHC	μg/kg	6 U	_	7 U	-
Chlordane	μg/kg	41 JP		70 U	-
Delta-BHC	μg/kg	6 U		7 U	-
Endosulfan sulfate	μg/kg	6 U	-	7 U	_
Endrin Aldehyde	μg/kg	6 U	-	7 U	-
Heptachlor	μg/kg	6 U		7 U	-
Heptachlor epoxide	μg/kg	6 U	-	7 U	-
Methoxychlor	μg/kg	3.6 J		7 U	-
PETROLEUM	F'O' "O				
HYDROCARBONS					
TPH	μg/g	-	120	1180	160
	1.00				1,000,000,000

	Units	UPCA-SB06-0001	UPCA-SB06-0501	UPCA-SB06-0801	UPCA-SB06-1101
METALS					
Aluminum (A1)	mg/kg	4800	-	20000	18000
Antimony (Sb)	mg/kg	59	-	44	42 U
Arsenic (As)	mg/kg	56	-	31	16
Barium (Ba)	mg/kg	140		260	270
Beryllium (Be)	mg/kg	0.55		0.60	0.57 U
Cadmium (Cd)	mg/kg	9.0	-	8.3	8.1
Calcium (Ca)	mg/kg	30000	-	16000	20000
Chromium (Cr)	mg/kg	59	-	33	28
Cobalt (Co)	mg/kg	13	-	17	19
Copper (Cu)	mg/kg	120	-	51	37
fron (Fe)	mg/kg	22000	-	25000	25000
Lead (Pb)	mg/kg	490	-	460	120
Magnesium (Mg)	mg/kg	940	-	8500	8900
Manganese (Mn)	mg/kg	230	-	450	710
Mercury (Hg)	mg/kg	2 U	-	2 U	2 U
Nickel (Ni)	mg/kg	25	• -	31	30
Potassium (K)	mg/kg	1100	-	3600	3400
Selenium (Se)	mg/kg	1.5	-	0.5 U	0.5 U
Silver (Ag)	mg/kg	2.9	-	1.4 U	1.4 U
Sodium (Na)	mg/kg	340	-	310	320
Thallium (Tl)	mg/kg	10 U	-	10 U	10 U
Vanadium (V)	mg/kg	42	-	54	50
Zinc (Zn)	mg/kg	500	•	140	110
ASBESTOS					
Chrysotile	%	1 U	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB07-0001	UPCA-SB07-0801	UPCA-SB07-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	7 U	2 J
Tetrachloroethene	μg/kg	-	7 U	7 U
Toluene	μ g/kg		7 U	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1.8 U	1 U	1 U
Anthracene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(k)fluoranthene	$\mu g/g$	1.8 U	1 U	1 U
Chrysene	$\mu g/g$	1.8 U	1 U	1 U
Di-n-butylphthalate	μg/g	1.8 U	1 U	1 U
Di-n-octylphthalate	μg/g	1.8 U	1 U	1 U
Fluoranthene	$\mu g/g$	1.8 U	1 U	1 U
Fluorene	$\mu g/g$	1.8 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1.8 U	1 U	1 U
N-Nitrosodi-n-propylamine	$\mu g/g$	1.8 U	1 U	1 U
Phenanthrene	μg/g	1.8 U	1 U	1 U
Pyrene	μg/g	1.8 U	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	50 U	6 U	-
4,4'-DDE	μg/kg	50 U	6 U	-
4,4'-DDT	μg/kg	50 U	6 U	-
Aldrin	μg/kg	50 U	6 U	-
Alpha-BHC	μg/kg	50 U	6 U	-
Chlordane	μg/kg	500 U	60 U	-
Delta-BHC	μg/kg	50 U	6 U	-
Endosulfan sulfate	μg/kg	50 U	6 U	
Endrin Aldehyde	μg/kg	50 U	6 U	-
Heptachlor	μg/kg	50 U	6 U	-
Heptachlor epoxide	μg/kg	50 U	6 U	-
Methoxychlor	μg/kg	50 U	6 U	-
PETROLEUM HYDROCARBONS				
TPH	μg/g		2	10 U

	Units	UPCA-SB07-0001	UPCA-SB07-0801	UPCA-SB07-1101
METALS				
Aluminum (A1)	mg/kg	870	6200	7700
Antimony (Sb)	mg/kg	31 U	46	41 U
Arsenic (As)	mg/kg	4.6	7.6	12
Barium (Ba)	mg/kg	21	190	100
Beryllium (Be)	mg/kg	0.41 U	0.49 U	0.54 U
Cadmium (Cd)	mg/kg	1.3	3.5	3.7
Calcium (Ca)	mg/kg	1500	9100	6700
Chromium (Cr)	mg/kg	3.1	13	13
Cobalt (Co)	mg/kg	2.7	11	7.7
Copper (Cu)	mg/kg	21	8.6	13
Iron (Fe)	mg/kg	4800	12000	12000
Lead (Pb)	mg/kg	95	17	220
Magnesium (Mg)	mg/kg	270	4500	3300
Manganese (Mn)	mg/kg	77	280	230
Mercury (Hg)	mg/kg	2 U	2 U	2 U
Nickel (Ni)	mg/kg	2.9	20	15
Potassium (K)	mg/kg	240	1200	1500
Selenium (Se)	mg/kg	0.5 U	0.5 U	0.5 U
Silver (Ag)	mg/kg	1.0 U	1.2 U	1.4 U
Sodium (Na)	mg/kg	37	250	120
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	13	22	22
Zinc (Zn)	mg/kg	71	41	43
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB08-0301	UPCA-SB08-0801	UPCA-SB08-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	8	7 U
Tetrachloroethene	μg/kg	-	7 U	7 U
Toluene	μg/kg	-	7 U	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	μg/g	1 U	1 U	1 U
Anthracene	$\mu g/g$	1 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1 U	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1 U	1 U	1 U
Benzo(k)fluoranthene	$\mu g/g$	1 U	1 U	1 U
Chrysene	$\mu g/g$	1 U	1 U	1 U
Di-n-butylphthalate	$\mu g/g$	1 U	1 U	1 U
Di-n-octylphthalate	$\mu g/g$	1 U	1 U	1 U
Fluoranthene	$\mu g/g$	1 U	1 U	1 U
Fluorene	μg/g	1 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	1 U	1 U
Phenanthrene	$\mu g/g$	1 U	1 U	1 U
Pyrene	μg/g	1 U	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	7 U	7 U	-
4,4'-DDE	μg/kg	7 U	7 U	-
4,4'-DDT	μg/kg	7 U	7 U	-
Aldrin	μg/kg	7 U	7 U	-
Alpha-BHC	μg/kg	7 U	7 U	-
Chlordane	μg/kg	70 U	70 U	-
Delta-BHC	μg/kg	7 U	7 U	-
Endosulfan sulfate	μg/kg	7 U	7 U	
Endrin Aldehyde	μg/kg	7 U	7 U	_
Heptachlor	μg/kg	7 U	7 U	-
Heptachlor epoxide	μg/kg	7 U	7 U	-
Methoxychlor	μg/kg	7 U	. 7 U	-
PETROLEUM				
HYDROCARBONS				
TPH	μg/g	-	-	10 U

	Units	UPCA-SB08-0301	UPCA-SB08-0801	UPCA-SB08-1101
METALS				
Aluminum (A1)	mg/kg	14000	13000	13000
Antimony (Sb)	mg/kg	15 U	16 U	15 U
Arsenic (As)	mg/kg	4.6	25	4.3
Barium (Ba)	mg/kg	310	250	250
Beryllium (Be)	mg/kg	0.68	0.68	0.69
Cadmium (Cd)	mg/kg	1.3 U	1.3 U	1.4 U
Calcium (Ca)	mg/kg	4400	4300	12000
Chromium (Cr)	mg/kg	18	16	15
Cobalt (Co)	mg/kg	11	8.5	9.0
Copper (Cu)	mg/kg	24	26	17
Iron (Fe)	mg/kg	20000	17000	18000
Lead (Pb)	mg/kg	130	120	16
Magnesium (Mg)	mg/kg	4300	3800	5200
Manganese (Mn)	mg/kg	460	200	510
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	22	22	19
Potassium (K)	mg/kg	2400	1500	1900
Selenium (Se)	mg/kg	0.50 U	0.5 U	0.50 U
Silver (Ag)	mg/kg	1.3 U	1.3 U	1.4 U
Sodium (Na)	mg/kg	250	100	120
Thallium (TI)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	39	35	30
Zinc (Zn)	mg/kg	100	81	65
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

^{- =} Not analyzed

	Units	UPCA-SB09-0001	UPCA-SB09-0801	UPCA-SB09-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	6 U	7 U
Tetrachloroethene	μg/kg	-	6 U	7 U
Toluene	μg/kg	:-:	6 U	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	μg/g	1.8 U	1 U	1 U
Anthracene	μg/g	1.8 U	2.4	1 U
Benzo(a)anthracene	μg/g	1.8 U	3.2	1 U
Benzo(a)pyrene	μg/g	1.8 U	2.6	1 U
Benzo(b)fluoranthene	μg/g	1.8 U	2.3	1 U
Benzo(ghi)perylene	μg/g	1.8 U	1 U	1 U
Benzo(k)fluoranthene	μg/g	1.8 U	2.3	1 U
Chrysene	μg/g	1.8 U	2.7	1 U
Di-n-butylphthalate	μg/g	1.8 U	3.1	1 U
Di-n-octylphthalate	μg/g	1.8 U	3.1	1.7
Fluoranthene	μg/g	2	5.3	1 U
Fluorene	μg/g	1.8 U	1 U	1 U
N-Nitrosodiphenylamine	$\mu g/g$	1.8 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1.8 U	1 U	1 U
Phenanthrene	μg/g	1.8 U	5.6	1 U
Pyrene	μg/g	1.8 U	4.6	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	1.5 J	30 U	=
4,4'-DDE	μg/kg	2.6 JP	3.8 JP	*
4,4'-DDT	μg/kg	0.54 JP	30 U	-
Aldrin	μg/kg	5 U	30 U	
Alpha-BHC	μg/kg	5 U	30 U	
Chlordane	μg/kg	20 J	550	-
Delta-BHC	μg/kg	5 U	30 U	-
Endosulfan sulfate	μg/kg	5 U	30 U	
Endrin Aldehyde	μg/kg	5 U	30 U	-
Heptachlor	μg/kg	5 U	8.8 P	-
Heptachlor epoxide	μg/kg	5 U	17	-
Methoxychlor	μg/kg	5 U	15	
Endrin	μg/kg	0.65 J	30 U	
PETROLEUM				
HYDROCARBONS TPH	μg/g	=		10 U
	roo			10 0

	Units	UPCA-SB09-0001	UPCA-SB09-0801	UPCA-SB09-1101
METALS				
Aluminum (A1)	mg/kg	6900	8000	17000
Antimony (Sb)	mg/kg	33 U	37 U	40 U
Arsenic (As)	mg/kg	16	19	8.4
Barium (Ba)	mg/kg	170	130	250
Beryllium (Be)	mg/kg	0.44 U	0.49 U	0.54 U
Cadmium (Cd)	mg/kg	6.9	4.9	6.5
Calcium (Ca)	mg/kg	6700	5100	11000
Chromium (Cr)	mg/kg	16	16	25
Cobalt (Co)	mg/kg	9.8	8.8	14
Copper (Cu)	mg/kg	100	43	23
fron (Fe)	mg/kg	25000	15000	20000
Lead (Pb)	mg/kg	370	270	18
Magnesium (Mg)	mg/kg	2500	3100	6400
Manganese (Mn)	mg/kg	420	250	380
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	14	15	26
Potassium (K)	mg/kg	1700	1400	3400
Selenium (Se)	mg/kg	0.50 U	0.50 U	0.50 U
Silver (Ag)	mg/kg	1.2	1.2 U	1.3 U
Sodium (Na)	mg/kg	200	280	480
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	20	22	43
Zinc (Zn)	mg/kg	230	120	88
ASBESTOS				,
Chrysotile	%	1 U	-	-

Analyte in blankNondetected

⁼ Estimated value

BQ = Value may not be site-related

⁼ Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

⁼ Not analyzed

	Units	UPCA-SB10-0301	UPCA-SB10-0601	UPCA-SB10-0901	UPCA-SB10-110
VOLATILE ORGANICS					
Methylene Chloride	μ g/kg		-	7 U	7 U
Tetrachloroethene	μg/kg		-	7 U	7 U
Toluene	μg/kg	-	-	7 U	7 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	$\mu g/g$	2.2 U	-	1.6	6
Anthracene	$\mu g/g$	2.2 U	-	1 U	5.3
Benzo(a)anthracene	$\mu g/g$	3.1	-	1 U	2.4 U
Benzo(a)pyrene	$\mu g/g$	3.3	-	1 U	2.4 U
Benzo(b)fluoranthene	$\mu g/g$	2.7	-	1 U	2.4 U
Benzo(ghi)perylene	$\mu g/g$	2.2 U	-	1 U	2.4 U
Benzo(k)fluoranthene	$\mu g/g$	3	-	1 U	2.4 U
Chrysene .	μg/g	3.1	-	1 U	2.4 U
Di-n-butylphthalate	$\mu g/g$	2.2 U	-	1 U	2.4 U
Di-n-octylphthalate	μg/g	2.2 U	-	1 U	2.4 U
Dibenzofuran	μg/g	2.2 U	-	1 U	3.6
Fluoranthene	$\mu g/g$	8.1	-	3.4	9.7
Fluorene	μg/g	2.2 U	-	1.1	5
N-Nitrosodiphenylamine	μg/g	2.2 U	· •	1 U	2.6
N-Nitrosodi-n-propylamine	$\mu g/g$	2.2 U	-	1 U	2.4 U
Phenanthrene	$\mu g/g$	7.1	-	2.8	14
Pyrene	$\mu g/g$	6.8	-	2.2	6.2
Napthalene	$\mu g/g$	2.2 U	-	1 U	2.6
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	7 U	-	8 U	-
4,4'-DDE	μg/kg	7 U	-	8 U	-
4,4'-DDT	μg/kg	8.5	-	8 U	-
Aldrin	μg/kg	7 U	-	8 U	-
Alpha-BHC	μg/kg	7 U	1-1	8 U	-
Chlordane	μg/kg	70 U	-	80 U	-
Delta-BHC	μg/kg	7 U	-	8 U	-
Endosulfan sulfate	μg/kg	7 U	-1	8 U	-
Endrin Aldehyde	μg/kg	7 U	-	8 U	-
Heptachlor	μg/kg	7 U	-	8 U	-
Heptachlor epoxide	μg/kg	7 U	-	8 U	-
Methoxychlor	μg/kg	7 U	-	8 U	-
PETROLEUM					
HYDROCARBONS					
TPH	$\mu g/g$	-	2160	•	10 U

	Units	UPCA-SB10-0301	UPCA-SB10-0601	UPCA-SB10-0901	UPCA-SB10-1101
METALS					
Aluminum (A1)	mg/kg	5900		8700	21000
Antimony (Sb)	mg/kg	15 U	-	17 U	18 U
Arsenic (As)	mg/kg	14	-	27	21
Barium (Ba)	mg/kg	210		220	290
Beryllium (Be)	mg/kg	0.58		0.56	1.0
Cadmium (Cd)	mg/kg	1.3 U	*	1.4 U	1.5 U
Calcium (Ca)	mg/kg	16000	-	13000	16000
Chromium (Cr)	mg/kg	16		16	26
Cobalt (Co)	mg/kg	6.9	-	8.4	12
Copper (Cu)	mg/kg	72	-	37	29
Iron (Fe)	mg/kg	17000	-	17000	24000
Lead (Pb)	mg/kg	300	-	160	200
Magnesium (Mg)	mg/kg	3800	-	5300	8600
Manganese (Mn)	mg/kg	300	-	350	620
Mercury (Hg)	mg/kg	2.0 U		2.0 U	2.0 U
Nickel (Ni)	mg/kg	16	-	19	28
Potassium (K)	mg/kg	680	-	1300	3100
Selenium (Se)	mg/kg	0.50	-	0.80	0.50 U
Silver (Ag)	mg/kg	1.3 U	-	1.4 U	1.5 U
Sodium (Na)	mg/kg	190	-	300	530
Thallium (Tl)	mg/kg	10 U	-	10 U	10 U
Vanadium (V)	mg/kg	19	-	27	51
Zinc (Zn)	mg/kg	250	-	110	100
ASBESTOS					
Chrysotile	%	2	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

* *	Units	UPCA-SB11-0001	UPCA-SB11-0801	UPCA-SB11-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg		4 J	6 U
Tetrachloroethene	μg/kg	-	6 U	6 U
Toluene	μg/kg	-	6 U	6 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1.9 U	1 U	1 U
Anthracene	μg/g	1.9 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1.9 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1.9 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	2.2	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1.9 U	1 U	1 U
Benzo(k)fluoranthene	$\mu g/g$	1.9 U	1 U	1 U
Chrysene	$\mu g/g$	2.1	1 U	1 U
Di-n-butylphthalate	μg/g	1.9 U	1 U	1 U
Di-n-octylphthalate	$\mu g/g$	1.9 U	1 U	1 U
Fluoranthene	$\mu g/g$	4.5	1 U	1 U
Fluorene	$\mu g/g$	1.9 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1.9 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1.9 U	1 U	1 U
Phenanthrene	$\mu g/g$	3.6	1 U	1 U
Pyrene	μg/g	3.4	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	7 U	6 U	
4,4'-DDE	μg/kg	7 U	6 U	-
4,4'-DDT	μg/kg	7 U	6 U	2
Aldrin	μg/kg	7 U	6 U	-
Alpha-BHC	μg/kg	7 U	6 U	-
Chlordane	μg/kg	380	360	-
Delta-BHC	μg/kg	7 U	6 U	-
Endosulfan sulfate	μg/kg	7 U	6 U	
Endrin Aldehyde	μg/kg	7 U	6 U	-
Heptachlor	μg/kg	7 U	6 U	-
Heptachlor epoxide	μg/kg	7 U	6 U	-
Methoxychlor	μg/kg	7.4	12	
PETROLEUM				
HYDROCARBONS				
TPH	μg/g		-	10 U

	Units	UPCA-SB11-0001	UPCA-SB11-0801	UPCA-SB11-1101
METALS				
Aluminum (A1)	mg/kg	5400	5100	2300
Antimony (Sb)	mg/kg	24 U	24 U	21 U
Arsenic (As)	mg/kg	42	7.4	3.9
Barium (Ba)	mg/kg	200	190	93
Beryllium (Be)	mg/kg	0.45 U	0.50 U	0.43 U
Cadmium (Cd)	mg/kg	19	4.9	2.8
Calcium (Ca)	mg/kg	4700	7600	4600
Chromium (Cr)	mg/kg	41	10	5.7
Cobalt (Co)	mg/kg	13	9.1	5.5
Copper (Cu)	mg/kg	180	9.9	3.4
Iron (Fe)	mg/kg	49000	11000	6800
Lead (Pb)	mg/kg	1300	28	7.3
Magnesium (Mg)	mg/kg	1700	3900	2300
Manganese (Mn)	mg/kg	370	240	130
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	40	18	10
Potassium (K)	mg/kg	1300	1100	500
Selenium (Se)	mg/kg	0.50	0.50 U	0.50 U
Silver (Ag)	mg/kg	1.6	1.2 U	1.1 U
Sodium (Na)	mg/kg	130	130	78
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	21	19	10
Zinc (Zn)	mg/kg	470	56	20
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

⁼ Not analyzed

	Units	UPCA-SB12-0301	UPCA-SB12-0801	UPCA-SB12-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	6 U	7 U
Tetrachloroethene	μg/kg	-	6 U	7 U
Toluene	μg/kg	-	6 U	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1 U	1 U	1 U
Anthracene	μg/g	1 U	1 U	1 U
Benzo(a)anthracene	μg/g	1 U	1 U	1 U
Benzo(a)pyrene	μg/g	1 U	1 U	1 U
Benzo(b)fluoranthene	μg/g	1 U	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1 U	1 U	1 U
Benzo(k)fluoranthene	μg/g	1 U	1 U	1 U
Chrysene	$\mu g/g$	1 U	1 U	1 U
Di-n-butylphthalate	μg/g	1 U	1 U	1 U
Di-n-octylphthalate	μg/g	1 U	1 U	1 U
Fluoranthene	$\mu g/g$	1 U	1 U	1 U
Fluorene	μg/g	1 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	1 U	1 U
Phenanthrene	μg/g	1 U	1 U	1 U
Pyrene	μg/g	1 U	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	6 U	7 U	•
4,4'-DDE	μg/kg	6 U	6 U	-
4,4'-DDT	μg/kg	6 U	6 U	
Aldrin	μg/kg	6 U	6 U	-
Alpha-BHC	μg/kg	6 U	6 U	-
Chlordane	μg/kg	60 U	70 U	-
Delta-BHC	μg/kg	6 U	7 U	
Endosulfan sulfate	μg/kg	6 U	7 U	•
Endrin Aldehyde	μg/kg	6 U	7 U	-
Heptachlor	μg/kg	6 U	7 U	-
Heptachlor epoxide	μg/kg	6 U	7 U	
Methoxychlor	μg/kg	6 U	7 U	-
PETROLEUM				
HYDROCARBONS				
TPH	μg/g	*		10 U

	Units	UPCA-SB12-0301	UPCA-SB12-0801	UPCA-SB12-1101
METALS				
Aluminum (A1)	mg/kg	2700	3300	20000
Antimony (Sb)	mg/kg	13 U	15 U	17 U
Arsenic (As)	mg/kg	3.5	15	9.2
Barium (Ba)	mg/kg	150	150	260
Beryllium (Be)	mg/kg	0.42 U	0.52 U	1.1
Cadmium (Cd)	mg/kg	1.1 U	1.3 U	1.5 U
Calcium (Ca)	mg/kg	7800	11000	17000
Chromium (Cr)	mg/kg	4.8	5.9	24
Cobalt (Co)	mg/kg	3.9	5.4	13
Copper (Cu)	mg/kg	8.1	4.2	26
fron (Fe)	mg/kg	7500	9600	26000
Lead (Pb)	mg/kg	26	87	17
Magnesium (Mg)	mg/kg	2700	4100	8100
Manganese (Mn)	mg/kg	140	160	650
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	8.4	10	28
Potassium (K)	mg/kg	250	350	3600
Selenium (Se)	mg/kg	0.50 U	0.50 U	0.50 U
Silver (Ag)	mg/kg	1.0 U	1.3 U	1.5 U
Sodium (Na)	mg/kg	99	110	260
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	10	13	47
Zinc (Zn)	mg/kg	28	30	88
ASBESTOS				
Chrysotile	%	1 U		

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB13-0001	UPCA-SB13-0801	UPCA-SB13-1101	UPCA-SB13-1601
VOLATILE ORGANICS					
Methylene Chloride	μg/kg	-	1 J	7 U	3 J
Tetrachloroethene	μg/kg	-	7 U	7 U	8 U
Toluene	μg/kg	-	7 U	7 U	8 U
SEMIVOLATILE					
ORGANICS					
Acenaphthene	μg/g	1.9 U	-	1 U	1 U
Anthracene	μg/g	1.9 U	-	1 U	1 U
Benzo(a)anthracene	μg/g	1.9 U	-	1 U	1 U
Benzo(a)pyrene	μg/g	1.9 U	-	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1.9 U	-	1 U	1 U
Benzo(ghi)perylene	μg/g	1.9 U		1 U	1 U
Benzo(k)fluoranthene	μg/g	1.9 U	-	1 U	1 U
Chrysene	μg/g	1.9 U	-	1 U	1 U
Di-n-butylphthalate	μg/g	1.9 U	-	5.2	1 U
Di-n-octylphthalate	μg/g	1.9 U	-	1 U	1.8
Fluoranthene	μg/g	1.9 U	-	1 U	1 U
Fluorene	μg/g	1.9 U	-	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1.9 U	-	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1.9 U	-	1 U	1 U
Phenanthrene	μg/g	1.9 U	-	1 U	1 U
Pyrene	μg/g	1.9 U	-	1 U	1 U
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	9.8	-	-	-
4,4'-DDE	μg/kg	9.2 P	-	-	-
4,4'-DDT	μg/kg	4.2 JP	-	-	-
Aldrin	μg/kg	6 U	-	-	-
Alpha-BHC	μg/kg	6 U	-	-	-
Chlordane	μg/kg	82 P	-	-	-
Delta-BHC	μg/kg	6 U	-	-	-
Endosulfan sulfate	μg/kg	6 U	-		-
Endrin Aldehyde	μg/kg	3.6 JP	-	-	-
Heptachlor	μg/kg	6 U	-		-
Heptachlor epoxide	μg/kg	6 U	-		-
Methoxychlor	μg/kg	7.3	-		-
Dieldrin	μg/kg	3.6 JP	-	-	-
PETROLEUM					
HYDROCARBONS					
TPH	μg/g	-		10 U	10 U

	Units	UPCA-SB13-0001	UPCA-SB13-0801	UPCA-SB13-1101	UPCA-SB13-1601
METALS					
Aluminum (A1)	mg/kg	6200	-	11000	-
Antimony (Sb)	mg/kg	39	-	42 U	-
Arsenic (As)	mg/kg	13	-	3.6	
Barium (Ba)	mg/kg	150	-	280	-
Beryllium (Be)	mg/kg	0.45 U	-	0.56 U	-
Cadmium (Cd)	mg/kg	7.0	-	4.3	-
Calcium (Ca)	mg/kg	17000		21000	-
Chromium (Cr)	mg/kg	29	-	19	-
Cobalt (Co)	mg/kg	22	-	14	-
Copper (Cu)	mg/kg	110	-	18	-
Iron (Fe)	mg/kg	14000	-	14000	-
Lead (Pb)	mg/kg	310	-	65	-
Magnesium (Mg)	mg/kg	16000	-	4800	-
Manganese (Mn)	mg/kg	420	-	500	-
Mercury (Hg)	mg/kg	2.0 U	-	2.0 U	-
Nickel (Ni)	mg/kg	24	-	21	-
Potassium (K)	mg/kg	1800	-	2100	-
Selenium (Se)	mg/kg	0.60	-	0.50 U	-
Silver (Ag)	mg/kg	1.1 U		1.4 U	
Sodium (Na)	mg/kg	530	-	220	-
Thallium (Tl)	mg/kg	10 U	-	10 U	-
Vanadium (V)	mg/kg	24	-	28	-
Zinc (Zn)	mg/kg	180		91	
ASBESTOS			-,		
Chrysotile	%	2	-	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB14-0001	UPCA-SB14-0801	UPCA-SB14-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	•	3 J	2 J
Tetrachloroethene	μg/kg	-	5 U	7 U
Toluene	μg/kg	-	2 J	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1.8 U	1 U	1 U
Anthracene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1.8 U	1 U	1 U
Benzo(k)fluoranthene	μg/g	1.8 U	1 U	1 U
Chrysene	μg/g	1.8 U	1 U	1 U
Di-n-butylphthalate	μg/g	1.8 U	1 U	1 U
Di-n-octylphthalate	$\mu g/g$	1.8 U	1 U	1 U
Fluoranthene	μg/g	1.8 U	1 U	1 U
Fluorene	μg/g	1.8 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1.8 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1.8 U	1 U	1 U
Phenanthrene	μg/g	1.8 U	1 U	1 U
Pyrene	μg/g	1.8 U	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	28 U	6 U	
4,4'-DDE	μg/kg	28 U	6 U	-
4,4'-DDT	μg/kg	28 U	6 U	-
Aldrin	μg/kg	28 U	6 U	
Alpha-BHC	μg/kg	28 U	6 U	-
Chlordane	μg/kg	280 U	60 U	-
Delta-BHC	μg/kg	28 U	6 U	
Endosulfan sulfate	μg/kg	28 U	6 U	
Endrin Aldehyde	μg/kg	28 U	6 U	
Heptachlor	μg/kg	28 U	6 U	
Heptachlor epoxide	μg/kg	28 U	6 U	-
Methoxychlor	μg/kg	28 U	6 U	-
Aroclor - 1260	μg/kg	330	60 U	
PETROLEUM				Minimum and the second
HYDROCARBONS				
TPH	μg/g	-	-	10 U

	Units	UPCA-SB14-0001	UPCA-SB14-0801	UPCA-SB14-1101
METALS			¥.	
Aluminum (A1)	mg/kg	3800	4400	8600
Antimony (Sb)	mg/kg	22 U	22 U	26 U
Arsenic (As)	mg/kg	79	7.3	5.3
Barium (Ba)	mg/kg	160	220	220
Beryllium (Be)	mg/kg	0.44 U	0.43 U	0.51 U
Cadmium (Cd)	mg/kg	13	4.2	5.7
Calcium (Ca)	mg/kg	7200	5700	17000
Chromium (Cr)	mg/kg	13	8.3	16
Cobalt (Co)	mg/kg	8.3	9.7	12
Copper (Cu)	mg/kg	120	11	16
Iron (Fe)	mg/kg	17000	9800	13000
Lead (Pb)	mg/kg	1800	14	17
Magnesium (Mg)	mg/kg	2200	2600	6600
Manganese (Mn)	mg/kg	310	240	230
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	20	20	22
Potassium (K)	mg/kg	840	810	1800
Selenium (Se)	mg/kg	1.4	0.50 U	0.50 U
Silver (Ag)	mg/kg	4.7	1.1 U	1.3 U
Sodium (Na)	mg/kg	130	120	200
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	15	16	31
Zinc (Zn)	mg/kg	770	40	45
ASBESTOS			9	
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

⁼ Not analyzed

	Units	UPCA-SB15-0001	UPCA-SB15-0801	UPCA-SB15-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	6 U	7 U
Tetrachloroethene	μg/kg	-	6 U	7 U
Toluene	μg/kg	-	6 U	7 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	μg/g	2 U	1 U	1 U
Anthracene	μg/g	2 U	1	1 U
Benzo(a)anthracene	μg/g	5.2	1.6	1 U
Benzo(a)pyrene	μg/g	5.3	1.3	1 U
Benzo(b)fluoranthene	μg/g	5.7	1 U	1 U
Benzo(ghi)perylene	μg/g	4.5	1 U	1 U
Benzo(k)fluoranthene	μg/g	4.6	1 U	1 U
Chrysene	μg/g	5.3	1.3	1 U
Di-n-butylphthalate	μg/g	2 U	1 U	1 U
Di-n-octylphthalate	μg/g	2 U	1 U	1 U
Fluoranthene	μg/g	8.5	3.2	1 U -
Fluorene	μg/g	2 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	2 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	2 U	1 U	1 U
Phenanthrene	μg/g	7.3	3	1 U
Pyrene	μg/g	9.9	3	1 U
Napthalene	μg/g	2.2	1 U	1 U
Indeno(1,2,3-cd)pyrene	μg/g	4	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	6 U	7 U	-
4,4'-DDE	μg/kg	6 U	7 U	-
4,4'-DDT	μg/kg	6 U	7 U	-
Aldrin	μg/kg	6 U	7 U	-
Alpha-BHC	μg/kg	6 U	7 U	
Chlordane	μg/kg	60 U	70 U	
Delta-BHC	μg/kg	6 U	7 U	-
Endosulfan sulfate	μg/kg	6 U	7 U	-
Endrin Aldehyde	μg/kg	6 U	7 U	*
Heptachlor	μg/kg	6 U	7 U	
Heptachlor epoxide	μg/kg	6 U	7 U	-
Methoxychlor	μg/kg	6 U	7 U	-
PETROLEUM				
HYDROCARBONS				
TPH	μg/g	-	-	10 U

	Units	UPCA-SB15-0001	UPCA-SB15-0801	UPCA-SB15-1101
METALS				
Aluminum (A1)	mg/kg	7100	14000	15000
Antimony (Sb)	mg/kg	13 U	16 U	17 U
Arsenic (As)	mg/kg	300	10	14
Barium (Ba)	mg/kg	240	390	230
Beryllium (Be)	mg/kg	0.93	0.88	0.8
Cadmium (Cd)	mg/kg	2.5	1.3	11
Calcium (Ca)	mg/kg	21000	18000	11000
Chromium (Cr)	mg/kg	33	21	19
Cobalt (Co)	mg/kg	6.8	12	9
Copper (Cu)	mg/kg	400	40	20
Iron (Fe)	mg/kg	23000	35000	18000
Lead (Pb)	mg/kg	1600	140	37
Magnesium (Mg)	mg/kg	2300	5300	6400
Manganese (Mn)	mg/kg	300	410	410
Mercury (Hg)	mg/kg	2.2	2 U	2 U
Nickel (Ni)	mg/kg	19	24	21
Potassium (K)	mg/kg	1000	2300	2600
Selenium (Se)	mg/kg	5.6	0.5 U	0.5 U
Silver (Ag)	mg/kg	6.7	1.3 U	1.4 U
Sodium (Na)	mg/kg	290	220	190
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	26	42	36
Zinc (Zn)	mg/kg	710	170	74
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

⁼ Not analyzed

	Units	UPCA-SB16-0001	UPCA-SB16-0801	UPCA-SB16-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	3 J	14
Tetrachloroethene	μg/kg	-	6 U	6 U
Toluene	μg/kg	-	6 U	6 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	μg/g	2.1 U	1 U	4 U
Anthracene	μg/g	2.1 U	1 U	4 U
Benzo(a)anthracene	μg/g	2.1 U	1 U	4 U
Benzo(a)pyrene	μg/g	2.1 U	1 U	4 U
Benzo(b)fluoranthene	$\mu g/g$	2.1 U	1 U	4 U
Benzo(ghi)perylene	μg/g	2.1 U	1 U	4 U
Benzo(k)fluoranthene	μg/g	2.1 U	1 U	4 U
Chrysene	μg/g	2.1 U	1 U	4 U
Di-n-butylphthalate	$\mu g/g$	2.1 U	1 U	4 U
Di-n-octylphthalate	$\mu g/g$	2.1 U	1 U	4 U
Fluoranthene	$\mu g/g$	2.1 U	1 U	4 U
Fluorene	μg/g	2.1 U	1 U	4 U
N-Nitrosodiphenylamine	$\mu g/g$	2.1 U	1 U	4 U
N-Nitrosodi-n-propylamine	μg/g	2.1 U	1 U	4 U
Phenanthrene	μg/g	2.1 U	1 U	4 U
Pyrene	μg/g	2.1 U	1 U	4 U
Napthalene	$\mu g/g$	2.1 U	1 U	4 U
Indeno(1,2,3-cd)pyrene	μg/g	2.1 U	1 U	4 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	28 U	7 U	-
4,4'-DDE	μg/kg	28 U	7 U	-
4,4'-DDT	μg/kg	28 U	7 U	
Aldrin	μg/kg	28 U	7 U	-
Alpha-BHC	μg/kg	28 U	7 U	-
Chlordane	μg/kg	280 U	70 U	-
Delta-BHC	μg/kg	28 U	7 U	-
Endosulfan sulfate	μg/kg	28 U	7 U	-
Endrin Aldehyde	μg/kg	28 U	7 U	-
Heptachlor	μg/kg	28 U	7 U	-
Heptachlor epoxide	μg/kg	28 U	7 U	-
Methoxychlor	μg/kg	28 U	7 U	-
Aroclor - 1260	μg/kg	440	70 U	-
PETROLEUM				
HYDROCARBONS				
TPH	μg/g	-	-	10 U

	Units	UPCA-SB16-0001	UPCA-SB16-0801	UPCA-SB16-1101
METALS				
Aluminum (A1)	mg/kg	4300	5500	2900
Antimony (Sb)	mg/kg	22 U	25 U	26 U
Arsenic (As)	mg/kg	64	5.8	4.5
Barium (Ba)	mg/kg	200	170	130
Beryllium (Be)	mg/kg	0.44 U	0.51 U	0.51 U
Cadmium (Cd)	mg/kg	7.4	4.6	3.2
Calcium (Ca)	mg/kg	4400	12000	8500
Chromium (Cr)	mg/kg	12	12	7.5
Cobalt (Co)	mg/kg	8.7	11	7.6
Copper (Cu)	mg/kg	86	7.7	4.7
Iron (Fe)	mg/kg	15000	13000	8500
Lead (Pb)	mg/kg	580	11	9.4
Magnesium (Mg)	mg/kg	1600	4700	3300
Manganese (Mn)	mg/kg	230	250	210
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	18	19	13
Potassium (K)	mg/kg	800	1200	640
Selenium (Se)	mg/kg	1.0	0.50 U	0.50 U
Silver (Ag)	mg/kg	1.3	1.3 U	1.3 U
Sodium (Na)	mg/kg	160	160	120
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	19	22	13
Zinc (Zn)	mg/kg	340	38	27
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB17-0501	UPCA-SB17-0801	UPCA-SB17-1101
VOLATILE ORGANICS				
Methylene Chloride	μg/kg	-	7 U	6 U
Tetrachloroethene	μg/kg		7 U	6 U
Toluene	μg/kg	-	7 U	6 U
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1 U	1 U	1 U
Anthracene	$\mu g/g$	1 U	1 U	1 U
Benzo(a)anthracene	$\mu g/g$	1 U	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1 U	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1 U	1 U	1 U
Benzo(ghi)perylene	$\mu g/g$	1 U	1 U	1 U
Benzo(k)fluoranthene	$\mu g/g$	1 U	1 U	1 U
Chrysene	$\mu g/g$	1 U	1 U	1 U
Di-n-butylphthalate	$\mu g/g$	1 U	1 U	1 U
Di-n-octylphthalate	μg/g	1 U	1 U	1 U
Fluoranthene	μg/g	1 U	1 U	1 U
Fluorene	μg/g	1 U	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	1 U	1 U
Phenanthrene	μg/g	1 U	1 U	1 U
Pyrene	μg/g	1 U	1 U	1 U
Napthalene	μg/g	1 U	1 U	1 U
Indeno(1,2,3-cd)pyrene	μg/g	1 U	1 U	1 U
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	7 U	7 U	-
4,4'-DDE	μg/kg	7 U	7 U	-
4,4'-DDT	μg/kg	7 U	7 U	-
Aldrin	μg/kg	7 U	7 U	-
Alpha-BHC	μg/kg	7 U	7 U	-
Chlordane	μg/kg	70 U	70 U	-
Delta-BHC	μg/kg	7 U	7 U	-
Endosulfan sulfate	μg/kg	7 U	7 U	
Endrin Aldehyde	μg/kg	7 U	7 U	
Heptachlor	μg/kg	7 U	7 U	-
Heptachlor epoxide	μg/kg	7 U	7 U	-
Methoxychlor	μg/kg	7 U	7 U	-
PETROLEUM	100			
HYDROCARBONS				
TPH	μg/g	-	10 U	10 U

	Units	UPCA-SB17-0501	UPCA-SB17-0801	UPCA-SB17-1101
METALS				
Aluminum (A1)	mg/kg	11000	16000	6300
Antimony (Sb)	mg/kg	15 U	16 U	15 U
Arsenic (As)	mg/kg	6.6	4.9	2.9
Barium (Ba)	mg/kg	200	220	150
Beryllium (Be)	mg/kg	0.62	0.65	0.49 U
Cadmium (Cd)	mg/kg	1.3 U	1.3 U	1.2 U
Calcium (Ca)	mg/kg	10000	6500	7500
Chromium (Cr)	mg/kg	13	16	8.5
Cobalt (Co)	mg/kg	8.0	7.8	4.6
Copper (Cu)	mg/kg	20	14	6.6
Iron (Fe)	mg/kg	15000	18000	10000
Lead (Pb)	mg/kg	21	15	7.6
Magnesium (Mg)	mg/kg	5900	5400	4500
Manganese (Mn)	mg/kg	450	320	210
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	18	17	11
Potassium (K)	mg/kg	1200	1500	710
Selenium (Se)	mg/kg	0.50 U	0.5 U	0.50 U
Silver (Ag)	mg/kg	1.3 U	1.3 U	1.2 U
Sodium (Na)	mg/kg	300	180	150
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	28	34	18
Zinc (Zn)	mg/kg	62	53	35
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units		UPCA-SB18-0801	UPCA-SB18-1101	
VOLATILE ORGANICS					
Methylene Chloride	μg/kg	-	15	15	
Tetrachloroethene	μg/kg		7 U	6 U	
Toluene	μg/kg	•	7 U	6 U	
SEMIVOLATILE					
ORGANICS					
Acenaphthene	μg/g	1.9 U	1 U	1 U	
Anthracene	μg/g	1.9 U	1 U	1 U	
Benzo(a)anthracene	$\mu g/g$	1.9 U	1 U	1 U	
Benzo(a)pyrene	$\mu g/g$	1.9 U	1 U	1 U	
Benzo(b)fluoranthene	$\mu g/g$	1.9 U	1 U	1 U	
Benzo(ghi)perylene	μg/g	1.9 U	1 U	1 U	
Benzo(k)fluoranthene	μg/g	1.9 U	1 U	1 U	
Chrysene	μg/g	1.9 U	1 U	1 U	
Di-n-butylphthalate	μg/g	1.9 U	1 U	1 U	
Di-n-octylphthalate	μg/g	1.9 U	1 U	1 U	
Fluoranthene	μg/g	1.9 U	1 U	1 U	
Fluorene	μg/g	1.9 U	1 U	1 U	
N-Nitrosodiphenylamine	μg/g	1.9 U	1 U	1 U	
N-Nitrosodi-n-propylamine	μg/g	1.9 U	1 U	1 U	
Phenanthrene	μg/g	1.9 U	1 U	1 U	
Pyrene	μg/g	1.9 U	1 U	1 U	
PESTICIDES/PCBs					
4,4'-DDD	μg/kg	6 U	7 U	1 U	
4,4'-DDE	μg/kg	6 U	7 U	1 U	
4,4'-DDT	μg/kg	6 U	7 U	1 U	
Aldrin	μ g/kg	6 U	7 U	1 U	
Alpha-BHC	μg/kg	6 U	7 U	1 U	
Chlordane	μg/kg	60 U	70 U	1 U	
Delta-BHC	μg/kg	6 U	7 U	1 U	
Endosulfan sulfate	μ g/kg	6 U	7 U	1 U	
Endrin Aldehyde	μg/kg	6 U	7 U	1 U	
Heptachlor	μg/kg	6 U	7 U	1 U	
Heptachlor epoxide	μg/kg	6 U	7 U	1 U	
Methoxychlor	μg/kg	6 U	7 U	1 U	
PETROLEUM					
HYDROCARBONS					
ТРН	μg/g			10 U	

	Units	UPCA-SB18-0001	UPCA-SB18-0801	UPCA-SB18-1101
METALS				
Aluminum (A1)	mg/kg	3800	8700	2800
Antimony (Sb)	mg/kg	23 U	26 U	25 U
Arsenic (As)	mg/kg	36	5.3	5.5
Barium (Ba)	mg/kg	180	260	150
Beryllium (Be)	mg/kg	0.62	0.52 U	0.50 U
Cadmium (Cd)	mg/kg	9.4	6.7	8.0
Calcium (Ca)	mg/kg	5900	18000	10000
Chromium (Cr)	mg/kg	10	16	7.1
Cobalt (Co)	mg/kg	7.8	13	11
Copper (Cu)	mg/kg	160	16	7.6
Iron (Fe)	mg/kg	18000	16000	11000
Lead (Pb)	mg/kg	620	16	14
Magnesium (Mg)	mg/kg	1500	7400	3000
Manganese (Mn)	mg/kg	250	400	150
Mercury (Hg)	mg/kg	2.0 U	2.0 U	2.0 U
Nickel (Ni)	mg/kg	15	24	36
Potassium (K)	mg/kg	1000	2000	630
Selenium (Se)	mg/kg	0.50 U	0.50 U	0.50 U
Silver (Ag)	mg/kg	1.6	1.3 U	1.3 U
Sodium (Na)	mg/kg	250	280	120
Thallium (Tl)	mg/kg	10 U	10 U	10 U
Vanadium (V)	mg/kg	16	28	16
Zinc (Zn)	mg/kg	400	53	35
ASBESTOS				
Chrysotile	%	1 U	-	-

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

	Units	UPCA-SB19-0001	UPCA-SB19-1101
VOLATILE ORGANICS	***************************************		
Methylene Chloride	μg/kg	-	6 U
Tetrachloroethene	μg/kg	-	6 U
Toluene	μg/kg		6 U
SEMIVOLATILE			
ORGANICS			
Acenaphthene	μg/g	1 U	1 U
Anthracene	$\mu g/g$	1 U	1 U
Benzo(a)anthracene	μg/g	1 U	1 U
Benzo(a)pyrene	$\mu g/g$	1 U	1 U
Benzo(b)fluoranthene	$\mu g/g$	1 U	1 U
Benzo(ghi)perylene	μg/g	1 U	1 U
Benzo(k)fluoranthene	μg/g	1 U	1 U
Chrysene	μg/g	1 U	1 U
Di-n-butylphthalate	μg/g	1 U	1 U
Di-n-octylphthalate	μg/g	1 U	1 U
Fluoranthene	μg/g	1.2	1 U
Fluorene	μg/g	1 U	1 U
N-Nitrosodiphenylamine	μg/g	1 U	1 U
N-Nitrosodi-n-propylamine	μg/g	1 U	1 U
Phenanthrene	μg/g	1 U	1 U
Pyrene	μg/g	1 U	1 U
PESTICIDES/PCBs			
4,4'-DDD	μg/kg	6 U	-
4,4'-DDE	μg/kg	6 U	<u></u>
4,4'-DDT	μg/kg	6 U	-
Aldrin	μg/kg	6 U	
Alpha-BHC	μg/kg	6 U	
Chlordane	μg/kg	60 U	-
Delta-BHC	μg/kg	6 U	-
Endosulfan sulfate	μg/kg	6 U	-
Endrin Aldehyde	μg/kg	6 U	-
Heptachlor	μg/kg	6 U	-
Heptachlor epoxide	μg/kg	6 U	-:
Methoxychlor	μg/kg	6 U	-
PETROLEUM			
HYDROCARBONS			
TPH	μg/g	·	10 U

	Units	UPCA-SB19-0001	UPCA-SB19-1101
METALS			The state of the s
Aluminum (A1)	mg/kg	5700	5100
Antimony (Sb)	mg/kg	13 U	15 U
Arsenic (As)	mg/kg	12	2.7
Barium (Ba)	mg/kg	180	79
Beryllium (Be)	mg/kg	1.1	0.49 U
Cadmium (Cd)	mg/kg	1.1 U	1.2 U
Calcium (Ca)	mg/kg	15000	5000
Chromium (Cr)	mg/kg	10	7.5
Cobalt (Co)	mg/kg	37	4.9
Copper (Cu)	mg/kg	140	7.1
Iron (Fe)	mg/kg	19000	8500
Lead (Pb)	mg/kg	280	24
Magnesium (Mg)	mg/kg	1600	3100
Manganese (Mn)	mg/kg	210	130
Mercury (Hg)	mg/kg	2.0 U	2.0 U
Nickel (Ni)	mg/kg	11	11
Potassium (K)	mg/kg	800	620
Selenium (Se)	mg/kg	0.60	0.50 U
Silver (Ag)	mg/kg	1.1 U	1.2 U
Sodium (Na)	mg/kg	240	130
Thallium (Tl)	mg/kg	10 U	10 U
Vanadium (V)	mg/kg	16	15
Zinc (Zn)	mg/kg	840	38
ASBESTOS	10,000		
Chrysotile	%	1 U	

B = Analyte in blank

U = Nondetected

J = Estimated value

BQ = Value may not be site-related

Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

Not analyzed

TABLE 4-3
CONSTRUCTION AREA SOIL SAMPLING RESULTS SUMMARY
PHASE II SITE ASSESSMENT
UPRR OMAHA SHOPS

	Units	Minimum	Maximum	Number Reported
SEMIVOLATILE				
ORGANICS				
Acenaphthene	$\mu g/g$	1.6	6	2
Anthracene	$\mu g/g$	1	5.3	3
Benzo(a)anthracene	$\mu g/g$	1.6	5.2	4
Benzo(a)pyrene	$\mu g/g$	1.3	5.3	4
Benzo(b)fluoranthene	$\mu g/g$	2.2	5.7	4
Benzo(ghi)perylene	$\mu g/g$	4.	5	1
Benzo(k)fluoranthene	μg/g	2.3	4.6	3
Chrysene	$\mu g/g$	1	5.3	6
Di-n-butylphthalate	μg/g	2.6	17	6
Di-n-octylphthalate	μg/g	1.1	5.2	5
Dibenzofuran	μg/g	3.	6	1
Fluoranthene	μg/g	1.9	9.7	12
Fluorene	μg/g	1.1	5	2
N-Nitrosodiphenylamine	μg/g	2.6	23 J	2
N-Nitrosodi-n-propylamine	μg/g	38 J		1
Phenanthrene	μg/g	1.7	34	10
Pyrene	μg/g	2.1	9.9	8
Napthalene	μg/g	2.2	2.6	2
Indeno(1,2,3-cd)pyrene	μg/g	4		1
PESTICIDES/PCBs				
4,4'-DDD	μg/kg	1.5 J	18 P	5
4,4'-DDE	μg/kg	0.65 JP	28	7
4,4' - DDT	μg/kg	0.54 JP	12 P	5
Aldrin	μg/kg	9.5	50	1
Alpha-BHC	μg/kg	2.8	J	1
Chlordane	μg/kg	11 JP	550	8
Delta-BHC	μg/kg	1.2 JP	1.4 JP	2
Endosulfan sulfate	μg/kg	1.2 JP	4.6 JP	2
Endrin Aldehyde	μg/kg	3.6 JP	4.4	2
Heptachlor	μg/kg	8.8	P	1
Heptachlor epoxide	μg/kg	1.0 JP	17	4
Methoxychlor	μg/kg	3.6 J	15	10
Endrin	μg/kg	0.6	55	1
Dieldrin	μg/kg	3.6	JP	1
Aroclor - 1260	μg/kg	330	440	2

B = Analyte in blank

U = Nondetected

J = Estimated value

P = Greater than 25% difference between Quant and Confirm GC analysis, lower of two values is reported following EPA guidelines

5.1 SUMMARY

The following discussion describes the findings of the Phase II Site Assessment at the Construction Area of the Omaha Shops, including historical and background data, physical characterization, and nature and extent of contamination.

5.1.1 Site History

The Omaha Shops were in operation for approximately 100 years, with principal functions as a railroad locomotive fueling facility, repair shop, paint shop, and car body repair shop.

5.1.2 Physical Characteristics

- The Construction Area occupies about 100 acres in the central part of the Omaha Shops and includes an area that may be disturbed by future construction.
- The ground surface at the site is nearly level. Surface drainage is primarily to the east, toward the Missouri River.
- Fill ranges in thickness from 1 to 9 feet at the site, with the thickest fill on the eastern side of the site. Alluvial deposits consisting of interbedded clay, silt, sand, and gravel at thicknesses of 10 to 40 feet underlie the fill and rest on bedrock of Pennsylvanian age.
- The water table at the site varies from 3 to 15 feet below ground surface. Groundwater appears to flow northeasterly, with a calculated hydraulic gradient in the direction of flow estimated to be about 0.01 feet per foot. The alluvial sediments are expected to have a hydraulic conductivity with a range of 0.3 to 0.003 feet per day.

5.1.3 Nature and Extent of Contamination

Soil samples were analyzed for VOCs, semi-VOCs, pesticides, PCBs, petroleum hydrocarbons, metals, and asbestos. The nature and extent of soil contamination in the Construction Area at the Omaha Shops can be summarized as follows:

- Low levels of three volatile organic compounds were found in the soil samples collected from the Construction Area. The three compounds included toluene, tetrachloroethene, and methylene chloride. Toluene and tetrachloroethene were each detected in one sample at an estimated concentration of 2J μg/kg. The reported methylene chloride concentration (2J μg/kg to 15 μg/kg) are likely due to laboratory contamination.
- Low levels of semi-VOCs, primarily PAHs, were found in surface soil samples. The highest total PAH concentration reported was 48.8 μ g/g at boring UPCA-SB10.
- Low levels of pesticides were found in soil samples collected from the Construction Area. With the exception of chlordane, the highest reported pesticide concentration in the soil samples was 18P μg/kg of 4,4'-DDD. Chlordane was detected in three samples at concentrations greater than 100 μg/kg (550 μg/kg, 380 μg/kg, and 360 μg/kg).
- Aroclor 1260, a PCB, was detected in two soil samples at concentrations of 330 μ g/kg and 440 μ g/kg.
- TPH was reported in eleven soil samples at concentrations ranging from 11 μ g/kg to 3,840 μ g/kg.
- Several metals were detected in the soil samples. The metals detected and their concentration ranges are summarized below:

Aluminum

870-21,000 mg/kg

Antimony

39-59 mg/kg

Arsenic	2.7J-300 mg/kg
Barium	21-800 mg/kg
Beryllium	0.56-2.4 mg/kg
Cadmium	1.3-19 mg/kg
Calcium	1,500-170,000 mg/kg
Chromium	3.1-59 mg/kg
Cobalt	2.7-37 mg/kg
Copper	3.4-400 mg/kg
Iron	4,800-71,000 mg/kg
Lead	7.3-1,600 mg/kg
Magnesium	270-16,000 mg/kg
Manganese	77-800 mg/kg
Mercury	2.2 mg/kg
Nickel	2.9-89 mg/kg
Potassium	240-4,400 mg/kg
Selenium	0.6-5.6 mg/kg
Silver	1.2-6.7 mg/kg
Sodium	37-710 mg/kg
Vanadium	10-54 mg/kg
Zinc	20-1,600 mg/kg

5.2 CONCLUSIONS

The following conclusions about the Construction Area Phase II Assessment have been made based on the currently available data:

• The low levels of VOCs, semi-VOCs, pesticides/PCBs, and TPH detected in the soil samples from the Construction Area are not likely to represent a serious threat to human health or the environment. Selected compounds are present, however, at levels that may require further evaluation. • Most of the metals detected in the soil samples from the Construction Area are present at concentrations that are not likely to represent a serious threat to human health or the environment. Selected metals (i.e., arsenic, chromium, and lead) are present, however, at levels that may require further evaluation.

5.3 RECOMMENDATIONS

It is recommended that a screening-level risk assessment be completed to evaluate whether chemicals detected in the Construction Area could potentially pose an unacceptable risk to human health. The screening-level risk evaluation would compare contaminant concentrations to risk-based concentrations (RBCs) for hypothetical future exposure scenarios. It is recommended that the hypothetical exposure scenarios include recreational, occupational, and construction uses for the site. The RBCs would represent soil concentrations that, with conservative exposure assumptions, would not be expected to result in unacceptable human health risks. The results of the screening-level risk assessment would be used to evaluate the necessity and scope of potential corrective action for the site.

- Bouwer, Herman, 1989. The Bouwer and Rice Slug Test an update: Groundwater, v. 27, No. 3, May-June 1989, p. 304-309.
- Bouwer, H., and R. C. Rice, 1976. A Slug Test for Determining a Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells: Water Resources Research, v. 12, p. 423-4238.
- HDR Engineering, Inc. 1990. Site Investigation Report. Omaha Shops and Maintenance Facility Environmental Assessment. Prepared for Union Pacific Railroad Company. Omaha, Nebraska.
- Nebraska Department of Environmental Control, 1991. Title 118-Groundwater Quality Standards and Use Classification. Lincoln, Nebraska, effective date, September 3, 1991.
- SOS International. 1988. Omaha Shops Building Survey (Asbestos). Prepared for Union Pacific Railroad Company. Omaha, Nebraska.
- Terracon. 1988. Diesel Recovery Design (Phase I). Union Pacific Rail Yard. Omaha, Nebraska. Prepared for Union Pacific Railroad Company. Omaha, Nebraska.
- Terracon Consultants EC, Inc. 1992. Phase I Recovery System Monitoring Reports.

 Prepared for Union Pacific Railroad Company. Omaha, Nebraska.
- Union Pacific System. 1984. Geologic and Hydrologic Investigation of Union Pacific's Omaha Yard and Vicinity. Prepared for the Nebraska Department of Environmental Control. Union Pacific System Planning and Analysis Department.
- United States Pollution Control Inc. 1988. PCB Transformer Survey. Omaha Shops. Prepared for Union Pacific Railroad Company. Omaha, Nebraska.

United States Pollution Control Inc. 1988. Preliminary Site Assessment. Omaha Shops. Prepared for Union Pacific Railroad Company. Omaha, Nebraska.

Woodward-Clyde. 1992. Phase II Site Assessment Work Plan. Omaha Shops. Prepared for Union Pacific Railroad Company. Omaha, Nebraska.

APPENDIX
CONSTRUCTION AREA BORING LOGS

,					BORING LOG CA-SB01			
PROJE LOGGE SURFA WATER	CT LO ED BY CE EI	LEVATION OF THE PROPERTY IN TH	UPRR A _ O Barcia N TH _ 5.0 EPTH _ set bori	-	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 3/4/92 RIG CME 55 METHOD 4.25-inch ID F Nu lamp.)4		
ft.		SAI	MPLE					
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
-	S	7/12	28 29		14" black ASPHALT - Medium dense, black CINDERS, GRAVEL, SLAG with R.R. Wood Fibers	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pavement Fill Solvent odor BH = 5-7ppm	
_	S	2/2	50/2"		Loose, black SLUDGE with R.R. Wood Fibers		Stopped 3-3-92 Resumed 3-4-92 Fill	
5—	S	14/24	P/12" 4 1		Soft, dark greenish gray, low plastic CLAY with a trace of Sand and Cinders (CL)		Fill (P=weight of hammer) Hydrocarbon odor	
_	S	15/24	1 2 3 4		Soft, dark gray to black, low plastic, Silty CLAY (CL)		Alluvium	
_					Soft, dark gray, medium plastic CLAY		Hydrocarbon odor Alluvium	
10-	S	20/24	1 2 2 3		(CL/CH) With small pockets of free Product		Hydrocarbon odor	

					BORING LOG CA-SB01			1
PROJE LOGGE SURFA WATER	CT LC ED BY CE EL	AME:	N <u>O</u> Parcia N — TH _5.	on H	SHEET2 of PROJECT NO91MC20 TASK NO302 DATE3/4/92 RIGCME 55 METHOD4.25-inch ID F Nu lamp.			
ft.		SAI	MPLE			T		
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
15—	S	24/24	2 3 3 3 3		Soft, dark gray, highly plastic, CLAY (CH) With small pockets of free Product		Sheen on sample	
20-	S	24/24	1 1 1				Trace of odor NOTE: Collected soil samples for	

					BORING LOG CA-SB01			
PROJE LOGG SURFA WATER	ECT LO ED BY ACE EL	LEVATION OF THE PROPERTY DEP	UPRR N _ O Garcia ON TH _ 5. EPTH _ Set bor	-	SHEET3 of PROJECT NO91MC2 TASK NO302 DATE3/4/92 RIG CME_55 METHOD4.25-inch ID I INu lamp.	04		
DEPTH, ft.	TYPE	RECOVERY	RESISTANCE T	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
25-	S	5/7	30 50/1"	SH SH	Hard, gray, weathered SHALE with Silt		chemical analysis at 1'-2', 3', 4'-6', 6'-8', 9'-11', 14'-16', 19'-21' & 24'-24.5. Bedrock-refusal BOTTOM OF BORING @ 24.6'	

					BORING LOG CA-SB02			
PROJE LOGGE SURFA WATER	ECT LO ED BY ACE EL R ENTI R SUR	AME OCATION /I_G LEVATION RY DEPT RFACE DE	N <u>O</u> Garcia ON — TH _5.	-	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 3/3/92 RIG CME 55 METHOD 4.25-inch ID I	04		
#.		SAN	MPLE					7
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
0-					4" black ASPHALT		Pavement	
-	s	9/12	5 4	1	Loose, dark brown to black, medium- to coarse-grained SAND with Gravel, Cinders, and Slag	WATER BY	Fill	
-	s	2/24	22.8	3	Fooft, dark brown, SLUDGE with Silt and Gravel	THE PROPERTY OF STATES OF	Fill Slight hydrocarbon odor and sheen	
5	s	0/24	2244				Z No recovery 5'-7'	
	s	12/24	11 22	12	Soft, greenish gray, low plastic CLAY with R.R. Wood Fibers (CL) Soft, greenish gray, medium plastic, Silty		Fill Hydrocarbon odor BH=1ppm, BZ=ND	
10-	S	24/24	12 34	ND	CLAY (CL/CH)		Alluvium	

					BORING LOG CA-SB02			
PROJE LOGGI SURFA WATER WATER	ECT LO ED BY ICE EI R ENT R SUR	AME: DCATIOI J(LEVATIO RY DEP' FACE DI	N <u>O</u> Garcia DN — TH —5. EPTH —	_	SHEET2 of PROJECT NO91MC20 TASK NO302 DATE3/3/92 RIG CME_55 METHOD4.25-inch_ID_I	04		
÷		SA	MPLE					-
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
-					Soft, greenish gray, highly plastic CLAY (CH)		Alluvium	
- 15	S	24/24	23 43	ND	Becomes firm, mottled grayish brown		NOTE: Collected soil samples for chemical analysis at 1'-2', 3'-5', 7'-9', 9'-11', 14'-16', 19'-21' & 22'-22.5.	
-			6 12 12 20		Firm, gray, Sandy SILT with some Clay (ML)		Alluvium	
	s	16/24		ND				
20-						-		

				BORING LOG CA-SB02			
PROJECT LOGGED SURFACE WATER E WATER S	T NAME: T LOCATIO BY J E ELEVATIO ENTRY DEP	NO Garcia DN TH _5 EPTH _	_	SHEET3 of PROJECT NO91MC2 TASK NO302 DATE3/3/92 RIGCME_55 METHOD4.25-inch ID]	04		
ŧ-	SA	MPLE					
DEPTH,	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
20				Very stiff, gray, SILTSTONE, weathered SHALE	լ ար	Weathered Bedrock	
:	S 4/9	53 50/3"	ND	Becomes hard	Mild lift	Bedrock-refusal	
25-						BOTTOM OF BORING @ 22.8'	

					BORING LOG CA-SB03			
PROJE LOGGE SURFA WATER WATER	ECT LO ED BY CE EL R ENT	CATION J_G LEVATIO RY DEPT	N _O Sarcia N TH _2 EPTH _	maha, 5 NR	AHA SHOP Nebraska ——————————————————————————————————	_	SHEET of PROJECT NO91MC20 TASK NO302 DATE3/3/92 RIG CME 55 METHOD _4.25-inch ID I	04
£†.		SAI	MPLE					_
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
0-					7" black ASPHALT		Pavement	
_	S	8/12	3 5	ND	Loose, black SAND with Cinders and Slag and some Bricks and Rubble	10 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	Fill	
_	S	6/11	12 50/5"	ND	- Very hard, light gray LIMESTONE		Old Pavement	
5—					Loose, black SLAG and CINDERS		Refusal @ 3'11" Fill	
_	s	18/24	23	ND	Soft, dark gray, low plastic, Sandy CLAY (CL)	111111111111111111111111111111111111111	Alluvium	
-			23 33		Soft, mottled grayish brown, low plastic, Silty CLAY (CL)		Slight stagnant odor Alluvium	
	S	24/24		ND		国		
10-			-					

					BORING LOG CA-SB03			
PROJE LOGGE SURFA WATER	CT LO ED BY CE EI	AME: DCATION	NO Garcia N TH _2. EPTH _ set bor	-	SHEET of PROJECT NO91MC29 TASK NO 302 DATE 3/3/92 RIG CME 55 METHOD 4.25-inch ID I	04		
ft.		SAI	MPLE					7
O DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
15—	S	24/24	12 31	ND	Firm, mottled grayish brown, highly plastic CLAY (CH) Small black organic lenses Becomes soft Very soft, gray, Sandy SILT with a trace of Clay (ML)		Alluvium	
20-	S	24/24	11	ND			NOTE: Collected soil samples from chemical analysis at 1'-2', 3'-5', 6'-8',	
							1	

					BORING LOG CA-SB03			
PROJE LOGGE SURFA WATER	ECT LC ED BY CE EL R ENTI	EVATION DEP	UPRR N _ O Garcia ON TH _ 2. EPTH _ Set bor	_	SHEET3 of PROJECT NO91MC20 TASK NO302 DATE3/3/92 RIGCME_55 METHOD4.25-inch ID I	04		
#.		SA	MPLE					
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
25—		1/1	된 56/1*	±	Hard LIMESTONE		9'-11', 14'-16', and 19'-21'. Limestone fragments in sample Bedrock-refusal BOTTOM OF BORING @ 23.6'	

					BORING LOG CA-SB04			
PROJE LOGGE SURFA WATER WATER	CT LO ED BY CE EI ENT	DCATION J_G _EVATIO RY IDEPT FACE DE	NO Farcia N TH _12 EPTH _	maha, 2.5 NR	AHA SHOP Nebraska ——————————————————————————————————	_	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 2/27/92 RIG CME 55 METHOD 4.25-inch ID I	
ft.		SAI	MPLE					-
O DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
_	S	12/12	8	ND	Loose, black SAND with Gravel, Cinders, and Slag		Fill	
_					Soft, mottled grayish brown, low plastic, Silty		Fill	
_	S	22/24	2 2 3 3	ND	CLAY with some Cinders and Slag (CL)			
5	S	18/24	4 5 5 8	ND	Firm, mottled greenish gray, Sandy SILT with Clay (ML)		Alluvium	
_			O		Firm, dark gray, low plastic, Silty CLAY with some Sand (CL)		Alluvium	
10-	S	15/24	2 1 2 2	ND	Soft, dark gray, Sandy SILT with Organic Wood Fibers, and a trace of Leaves (ML)		Alluvium	

BORING LOG CA-SB04 PROJECT NAME __UPRR - OMAHA SHOP SHEET ___ PROJECT LOCATION Omaha, Nebraska 91MC204 PROJECT NO. _ LOGGED BY I. Garcia DRILLED BY R. Herber 302 TASK NO. __ __ ELEVATION DATUM __USGS SURFACE ELEVATION ____ 2/27/92 DATE __ **CME 55** RIG __ WATER SURFACE DEPTH NR FEET UC METHOD 4.25-inch ID HSA COMMENTS UC = Upon completion of boring SAMPLE ELEVATION RESISTANCE PPM RECOVERY SYMBOL DEPTH, FIELD DESCRIPTION **NOTES** Ę, 10-2 Soft, gray, highly plastic CLAY (CH) Alluvium 2 22/24 ND 15-Mottled grayish brown Becomes very soft NOTE: Collected soil samples for chemical analysis at 1 0'-1', 3'-5', 6'-8', 1 9'-11', 14'-16', 1 19'-21', and 24'-26'. 24/24 ND

					BORING LOG CA-SB04			
PROJE LOGGE SURFA WATEF WATEF	CT LC ED BY CE EI ENT	AME	N O Sarcia N O TH1 EPTH _ EPTH _		SHEET3 of PROJECT NO91MC2 TASK NO302 DATE2/27/92 RIG CME 55 METHOD4.25-inch ID I	04		
© DEPTH, ft.	TYPE	RECOVERY	RESISTANCE T	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
25	S	24/24	1 1 1	ND	With small, gray, fine-grained SAND lenses		BOTTOM OF BORING @ 26'	

BORING LOG CA-SB05									
PROJE LOGGE SURFA WATEF WATEF	CT LC ED BY CE EL R ENTI	EVATION EVATION RY DEP	UPRR N _ O Garcia ON TH _ 12 EPTH _ Up	- - -	SHEET of	04			
f.		SA	MPLE						
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
5—					Loose, black SAND with Gravel, Cinders, and Slag Soft, grayish brown, low plastic, Silty CLAY (CL) Becomes dark gray with some Sand Soft, dark gray, highly plastic CLAY (CH)		Fill Moist Alluvium		
10-						===	Alluvium		

BORING LOG CA-SB05 PROJECT NAME: UPRR - OMAHA SHOP SHEET ______ of ____3 PROJECT NO. ___91MC204 PROJECT LOCATION Omaha, Nebraska LOGGED BY J. Garcia DRILLED BY R. Herber 302 SURFACE ELEVATION ______ ELEVATION DATUM __USGS WATER ENTRY DEPTH 12.5 FEET ATD ¥ WATER SURFACE DEPTH NR FEET UC **CME 55** METHOD 4.25-inch ID HSA COMMENTS UC = Upon completion of boring SAMPLE ELEVATION RESISTANCE PPM RECOVERY DEPTH, FIELD DESCRIPTION NOTES ŦS, 10-**WOOD Fibers** 15-Becomes very soft, gray

BORING LOG CA-SB05									
PROJE LOGGE SURFA WATER WATER	ECT LO ED BY ICE EL R ENTI	EVATION EVATION RY IDEP FACE DI UC	UPRR N _ O Garcia ON TH _ 12 EPTH _ C = Up	maha, 2.5 NR	-	SHEET3 of PROJECT NO91MC20 TASK NO302 DATE2/27/92 RIGCME 55 METHOD4.25-inch ID I	04		
DEPTH, ft.	TYPE	RECOVERY S	RESISTANCE H	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
25—			RE		Soft, gray, Sandy SILT (ML)		P=weight of hammer NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', 9'-11', 14'-16', 19'-21', and 24'-26'. Alluvium BOTTOM OF BORING @ 26'		
30-									

BORING LOG CA-SB06									
PROJE LOGGE SURFA WATER	CT LO ED BY CE EI ENT SUR	AME — DCATION J. C LEVATION RY DEPT	NO Garcia N TH _6	_	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 3/2/92 RIG CME 55 METHOD 4.25-inch ID				
f†.		SAI	MPLE						
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0 -	S	10/24	4 4	1	Loose, black SAND with Gravel, Cinders, and Slag	STATE TO THE STATE OF THE STATE	Fill		
_	S	15/24	1 1 2 2	30	Soft, mottled greenish gray, low plastic, Silty CLAY with a trace of Gravel and Cinders (CL)		Fill BZ=1ppm BH=1ppm Hydrocarbon odor		
5			2		Firm, dark greenish gray, low plastic, Silty CLAY (CL)		Alluvium		
_	S	20/24	3	60			<u>Z</u>		
10	S	20/24	2 3 2 3	7					

BORING LOG CA-SB06										
PROJE LOGGE SURFA WATER WATER	CT LC ED BY CE EL ENTI SURI	LEVATION TO SERVICE DISTRICT CONTROL OF THE PROPERTY OF THE PR	UPRR NO Garcia N TH _6. EPTH _	maha, 8 NR	-	SHEET of PROJECT NO91MC20 TASK NO302 DATE3/2/92 RIG CME 55 METHOD4.25-inch ID I	04			
f†.		SAI	MPLE							
Ö DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
-					,		Slight hydrocarbon odor			
_							BOTTOM OF BORING @ 11'			
_										
_					_		NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', and 9'-11'.			
15-										
_								*		
_					-		,			
_					-					
20-					_					

BORING LOG CA-SB07									
PROJE LOGGE SURFA WATEF WATEF	ECT LO ED BY CE EI R ENT R SUR	CATION	N <u>C</u> Garcia N — TH _6 EPTH _	- OMA Omaha, 8 NR	-	SHEET of PROJECT NO91MC2 TASK NO 302 DATE 3/2/92 RIG CME 55 METHOD 4.25-inch ID I	04		
#		SAI	MPLE						
DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0-		LE	22					_	
					10" CONCRETE		Pavement		
_	s	10/12	2 3	ND	Loose, tan or brown, medium-grained SAND with Gravel (SP)		Fill - moist		
-	S	18/24	1 2 3 4	ND	Soft, light brown, medium plastic, Silty CLAY with some Gravel and Cinders (CL)		Fill		
5 	s	21/24	6 5 7 7	ND	Loose, brown, fine-grained SAND		Alluvium <u>Z</u>		
-	S	20/24	3 3 6 4	8	Soft to firm, dark gray, highly plastic CLAY (CH)		Alluvium		

BORING LOG CA-SB07									
LOGGE SURFA WATER	CT LC ED BY CE EL R ENTI R SUR	CATION IL C LEVATION IL C LEVATION IL C RY DEP	UPRR N _ O Garcia N TH _ 6. EPTH _	maha,		SHEET2 of PROJECT NO91MC2 TASK NO302 DATE3/2/92 RIGCME_55 METHOD4.25-inch ID]	04		
ft.		SA	MPLE						
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
-					Firm, dark gray, Clayey SILT (ML)		BOTTOM OF		
_							BORING @ 11'		
_					-		NOTE: Collected soil samples		
-							•		
15—									
_					-				
_					_				
_									
-									
20-				100 100					

BORING LOG CA-SB08									
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI	CATIONJ_G LEVATION RY DEPT	N <u>O</u> Farcia N —— TH <u>9</u> .	maha, 0	AHA SHOP Nebraska ——————————————————————————————————	_	PROJECT NO91MC204 TASK NO302 DATE2/26/92 RIGCME_55		
					FEET AD _\frac{\Pi}{\Pi}		METHOD 4.25-inch ID I	15A	
ft.		SAI	MPLE			ТТ			
DEPTH, f	TYPE	RECOVERY	RESISTANCE	нѕ, РРМ	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0-			<u>&</u>		7 CONCRETE	KXX	Down		
					7" CONCRETE	\bowtie	Pavement		
-			26		Stiff, mottled blackish brown, low plastic, Silty CLAY (CL)		Fill		
_	s	18/24	68	ND	_				
					Becomes firm, greenish gray				
	s	15/24	13 67	ND	Mottled greenish grayish brown				
-					`				
5-					Becomes soft, greenish gray				
-	s	13/24	23 44	ND	- - - *.				
_					Soft to firm, dark gray, low plastic, Silty CLAY (CL)		Alluvium		
-					With Wood Fibers		Stagnant odor		
-			23 23		Becomes soft, dark gray or black, low to medium plastic		<u>₹</u>		
46	S	24/24		ND					
10-									

BORING LOG CA-SB08										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EL ENTI SUR	LEVATION RY IDEP	UPRR N _ O Garcia N TH _ 9. EPTH _	maha,	_	SHEET of PROJECT NO91MC20 TASK NO302 DATE2/26/92 RIG CME_55 METHOD4.25-inch ID_I	04			
£‡.		SA	MPLE							
O DEPTH, 6	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
-					-		Slight organic odor			
_							BOTTOM OF BORING @ 11'			
_					-		NOTE: Collected			
-							soil samples for chemical analysis at 1'-3', 3'-5', 6'-8', and 9'-11'.			
15-					_					
_					-					
					-					
-					-					
-					-					
20-										

BORING LOG CA-SB09									
PROJE LOGGE SURFA WATER WATER	CT LO ED BY CE EI R ENT	AME — DCATIONJC LEVATIO RY DEPT	NO Garcia N TH _Z EPTH _	omaha, 0 NR	-	SHEET of PROJECT NO91MC29 TASK NO 302 DATE 3/2/92 RIG CME 55 METHOD 4.25-inch ID I	04		
ft.		SAI	MPLE						
o DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0					9" black ASPHALT		Pavement		
-	s	10/12	7	ND	Loose, dark brown SAND with Clay, Cinders, and Slag	A STATE OF S	Fill		
					Soft, dark brown, Sandy CLAY with some		Fill		
-	S	10/24	2 1 1 1 1	ND	Gravel and Cinders		1°III		
-	S	17/24	P 1 6 5	ND	Hard RUBBLE chunk at 5'		P=weight of hammer		
_					Loose, dark brown, fine-grained CLAY (CH)		Alluvium		
10-	s	24/24	1 4 4 7	ND	Soft, gray, highly plastic CLAY (CH)		Alluvium		

BORING LOG CA-SB09									
PROJE LOGGE SURFA WATER WATER	CT LC ED BY CE EL R ENTI	LEVATION TACE DISPLANTED	UPRR N _ O Garcia ON TH _ 7. EPTH _ C = Up	omaha, 0 NR	-	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 3/2/92 RIG CME 55 METHOD 4.25-inch ID I	04		
G DEPTH, ft.	TYPE	RECOVERY	RESISTANCE THE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
-					Firm, light gray to gray, Clayey SILT with a trace of Organic Fibers (ML)	畫///	Alluvium BOTTOM OF BORING @ 11'		
							NOTE: Collected soil samples for chemical analysis at 1'-2', 3'-5', 6'-8', and 9'-11'.		
20-									

BORING LOG CA-SB10									
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI	AME	N <u>O</u> larcia N —— TH <u>5</u> .	-	SHEET of PROJECT NO91MC20 TASK NO302 DATE2/26/92 RIG CME 55 METHOD _4.25-inch ID I)4 			
f†.		SAI	1PLE						
DEPTH, 4	TYPE	RECOVERY	RESISTANCE	РРМ	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
o <u>⊸</u>	_	REC	RESI	HS,		S		3	
J					4" black ASPHALT		Pavement		
					Loose, blackish brown SAND with Cinders				
-					-		Fill		
_					Becomes fine-grained with R.R. Wood				
	S	6/12	3	2	Fibers				
_			12 35		Becomes dark gray to black - interbeds Fibers		R.R. tie		
_	S	6/24		25	- Saturated -		Hydrocarbon odor,		
							sheen Creosote odor		
5—						¥	<u>7</u>		
_	S	0/24	11 23		Dark gray SLUDGE		Fill No recovery at 6'-8'		
-			11 22		With Wood Fibers		Resampled at 7'-9'		
_	S	17/24		17	Soft, dark blackish gray, highly plastic CLAY (CH)		Alluvium		
						==			
			12 33				BH=1ppm Sheen on sample		
10-	S	15/24		2					
10									

BORING LOG CA-SB10									
PROJE LOGGE SURFA WATER WATER	CT LC ED BY CE EL R ENTI	EVATION RY DEP	UPRR N _ O Garcia N O TH _ 5. EPTH _ Set bor	- - -	SHEET of PROJECT NO91MC20 TASK NO 302 DATE 2/26/92 RIG CME 55 METHOD 4.25-inch ID I)4 			
f†.		SA	MPLE						
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
_					_				
_							BOTTOM OF BORING @ 11'		
_							NOTE: Collected soil samples for chemical analysis at 2'-3', 4'-5', 7'-9', and 9'-11'.		
15—					_				
_					_		E .		
_									
					_				
20-									

BORING LOG CA-SB11									
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI R ENT R SUR	AME	N <u>O</u> larcia N — TH <u>9</u>	-	SHEET				
SAMPLE SAMPLE									
DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0-						Al-			
	s	10/12	4	ND	Loose, black SAND with Gravel and Cinders Loose, light brown, fine-grained SAND		Fill		
					_		Fill Moist		
-			1		Soft, brown, low plastic, Silty CLAY with some Sand, Cinders, and Slag		Fill Moist		
-	S	17/24	1 1 4	ND	_				
5-					Loose, light brown, fine-grained SAND (SP)		Fill		
_	S	24/24	6 4 4 6	ND	_				
_					Firm, mottled grayish brown, low plastic, Silty CLAY with some Sand (CL)				
10-	S	24/24	4 9 15 18	ND	Medium dense, light brown, fine-grained SAND (SP)		<u>Z</u>		

BORING LOG CA-SB11										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EL R ENTI R SUR	DCATIONJC _EVATION RY IDEP* FACE D		_	SHEET2 of2 PROJECT NO91MC204 TASK NO302 DATE2/28/92 RIGCME_55 METHOD4.25-inch ID HSA					
++	L	SA	MPLE							
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
_					Becomes medium-grained		POTTON OF			
_					-		BOTTOM OF BORING @ 11'			
_					-	-	NOTE: Collected			
_					-		soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', and 9'-11'.			
15—					_	-				
_					-	-				
_					- -					
_					-					
20-					_					
20-										

BORING LOG CA-SB12										
CT LO ED BY CE EI ENT SUR	CATION LEVATION RY IDEPT	_	SHEET of PROJECT NO91MC20 TASK NO302 DATE2/26/92 RIG CME 55 METHOD4.25-inch ID I	04						
	SAI						_			
TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION			
				11" CONCRETE	\bowtie	Pavement				
S	24/24	7 10 9 9	1	Loose, black CINDERS Loose, light brown, fine-grained SAND (SP)		Fill Fill				
		34	1	-		Moist				
S	17/24	44	ND	_		Saturated				
S	17/24	33 35	ND	Fine- to medium-grained		<u>Z</u>				
3	17,24		ND	Soft, gray, highly plastic CLAY (CH)		Alluvium				
		22								
S	16/24		ND		===					
	S S S S	S 24/24 S 17/24	SAMPLE SAMPLE	SAMPLE ND A SAMPLE SAMPLE SAMPLE SAMPLE ND A SAMPLE SAMPLE SAMPLE ND A SAMPLE SAMPLE ND A SAMPLE ND A SAMPLE SAMPLE SAMPLE ND A SAMPLE SAMPLE SAMPLE ND A SAMPLE SA	CT NAME: UPRR - OMAHA SHOP CT LOCATION Omaha, Nebraska ED BY _ L. Garcia	CCT NAME: _UPRR - OMAHA SHOP CCT LOCATION _Omaha, Nebraska	CT NAME UPRR - OMAHA SHOP CT LOCATION Omaha, Nebraska Debilled by R. Herber DES V. J. Garcia Debilled by R. Herber SELEVATION DATUM _USGS DE LEVATION			

BORING LOG CA-SB12										
PROJE LOGGI SURFA WATEF WATEF	ECT LO ED BY ICE EL R ENTI R SUR	LEVATION RY IDEP	N <u>O</u> Garcia ON — TH _5 EPTH _	maha, 0	AHA SHOP Nebraska ——————————————————————————————————	_	SHEET2 of PROJECT NO91MC20 TASK NO302 DATE2/26/92 RIGCME_55 METHOD4.25-inch ID_I	04		
0 DEPTH, ft.	TYPE	RECOVERY	RESISTANCE H	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
-					_		BOTTOM OF BORING @ 11'			
- 15							NOTE: Collected soil samples for chemical analysis at 1'-3', 3'-5, 6'-8', and 9'-11'.			
20-										

BORING LOG CA-SB13									
PROJE LOGGE SURFA WATER	CT LO ED BY CE EI	AMIE — DCATION J. G LEVATIO RY DEPT FACE DE	NO larcia N TH _3.		SHEET1 of3 PROJECT NO 91MC204 TASK NO 302				
#		SAI							
DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
0-			8		Loose, gray SILT with Gravel	1334	Fill		
	S	8/12	14	ND	Medium dense, black CINDERS and SLAG with R.R. Wood Fibers		Fill		
					- -	THE STATES OF TH	Wood chunk in bottom of sample		
_			20		Becomes SAND with Cinders and Slag				
_	S	8/24	10 9 9	ND			<u>Z</u>		
5—					Soft, blackish gray SLUDGE	13 PA STATE OF THE PARTY OF THE	Fill		
, -	S	5/24	1 2 1 3	ND	Soft, dark gray to black, low plastic, Silty		Alluvium		
					CLAY (CL)				
10-	S	20/24	1 1 2 2	1	With Pulmonate Shells				

BORING LOG CA-SB13									
PROJE LOGGE SURFA WATER WATER	ECT LO ED BY CE EI R ENT R SUR	AME — OCATION / J. () LEVATION RY DEP' IFACE D () Off	NO Garcia ON TH _3 EPTH _	-	SHEET of3 PROJECT NO91MC204 TASK NO302 DATE3/2/92 RIG CME 55 METHOD4.25-inch ID HSA				
#		SA	MPLE						
O DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
15-	S	24/24	1 1 1 2	ND	Firm, mottled greenish gray, low plastic, Silty CLAY (CL) Soft, mottled grayish brown, highly plastic CLAY (CH)		Alluvium		
_	S	24/24	1/24"	ND	Very soft, gray, Sandy CLAY with some fine-grained Sand lenses (CL w/SP)		Alluvium NOTE: Collected soil samples for		
20-									

BORING LOG CA-SB13									
PROJE LOGGE SURFA WATER	CT LO ED BY CE EI	LEVATION OF THE PROPERTY DEPT	NC Sarcia N TH _3	maha,	AHA SHOP Nebraska — DRILLED BYR. Herber — ELEVATION DATUMUSGS — FEET ATD \(\frac{\text{\ti}\text{\	- - -	SHEET3 of PROJECT NO91MC20 TASK NO302 DATE3/2/92 RIG CME 55 METHOD4.25-inch ID I		
#		SA	MPLE					_	
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
25—	S	6/12	43 56	ND	Hard, light gray, SHALE with a trace of Siltstone		chemical analysis at 0'-1', 3'-5', 6'-8', 9'-11', 14'-16', 19'-21', and 24'-25'. Weathered Bedrock @ 24' BOTTOM OF BORING @ 25'		

BORING LOG CA-SB14										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI ENT SUR	AMIE — DCATION J. G LEVATIO RY DEPT	N <u>O</u> Parcia N — TH —9	SHEET of						
ft.		SAI	MPLE							
DEPTH, f	TYPE	RECOVERY	RESISTANCE	, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
		꼾	RES	HS,				ᆸ		
0-	s	12/12	3	ND	Loose, black SAND with Gravel and Cinders		Fill			
_					Loose, light brown, fine-grained SAND (SP)		Fill			
	S	20/24	1 2 2 4	ND	Soft, light brown, low plastic, Silty CLAY with Sand (CL)		Fill			
5—					Loose, black CINDERS and SLAG	18 5 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Fill			
_			7 5 7		Loose, light brown, fine-grained SAND (SP)		Fill			
_	S	24/24	7 8	ND			Moist			
					Becomes very loose		_			
-			1		-		<u>√</u>			
10-	S	24/24	1 1 1	ND						

BORING LOG CA-SB14									
PROJECT NAME:UPRR - OMA PROJECT LOCATIONOmaha, LOGGED BYJ. Garcia SURFACE ELEVATION WATER ENTRY DEPTH9.0 WATER SURFACE DEPTHNR COMMENTS		SHEET of PROJECT NO91MC20 TASK NO302 DATE 2/28/92 RIG CME 55 METHOD 4.25-inch ID I	04						
RESISTANCE HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION					
	Soft, mottled grayish brown, Sandy SILT with small Iron-oxide stains		Alluvium BOTTOM OF						
15—			NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', and 9'-11'.						
20									

BORING LOG CA-SB15										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI	AME — DCATION	NO Garcia DN TH _9	_	SHEET1 of2 PROJECT NO91MC204 TASK NO302 DATE2/26/92 RIGCME 55 METHOD4.25-inch ID HSA					
£†.		SAI	MPLE							
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
0-			7		Loose, dark brown to black SILT with	7	Fill			
_	s	16/24	15 12 9	ND	Gravel and Cinders Orange BRICK fragments		Rubble			
					Loose, black CINDERS and SLAG		Fill			
5	s	18/24	2 4 4 5 5	ND	Firm, mottled grayish brown, low plastic, Silty CLAY (CL) Becomes mottled blackish gray with Slag and Gravel		Fill			
_					_		Slight stagnant odor			
_	S	24/24	3 2 3 4	ND	Soft, mottled greenish gray, highly plastic CLAY (CH)		Z Alluvium			
10-			· Ma			==				

BORING LOG CA-SB15									
LOGGE SURFAC	CT LC ED BY CE EL	CATION J. CO	NO Garcia DN TH _9	maha, 0	AHA SHOP Nebraska ——————————————————————————————————	PROJECT NO. 91MC204 TASK NO. 302			
ft.		SAI	MPLE						
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION	
-					With Roots and Fibers		Old swampy area		
_					_		BOTTOM OF BORING @ 11'		
-					_	-	NOTE: Collected soil samples for chemical analysis at		
-					-		0'-2', 3'-5', 6'-8', and 9'-11'.		
15					-				
-									
_					-				
20—						-			

BORING LOG CA-SB15A										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EL R ENTI	LEVATION OF THE PROPERTY IN TH	UPRR NO Garcia N TH _N	maha,	PROJECT NO91MC204 TASK NO302 DATE2/26/92 RIGCME_55					
COMM	SURI ENTS	FACE D	EPTH _ st atten	ipt at U		METHOD 4.25-inch ID I	HSA			
£+.		SA	MPLE					-		
о ОЕРТН,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
0-					3" black ASPHALT		Pavement			
_					CONCRETE		Old footing			
_										
					-					
-					-					
5-		9								
_					-					
_										
					Possible rebar		Refusal to auger BOTTOM OF			
_							BORING @ 7.5'			
_					-					
10-										

BORING LOG CA-SB16 PROJECT NAMEUPRR - OMAHA SHOP										
PROJE LOGGE SURFA WATEF WATEF	CT LO ED BY CE EI R ENT R SUR	OCATION 	NO Barcia N TH _Z EPTH _	maha, 5 NR	SHEET of2 PROJECT NO91MC204 TASK NO302 DATE2/28/92 RIGCME 55 METHOD4.25-inch ID HSA					
f†.		SAI	1PLE		,					
DEPTH, f	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
-	s	10/12	2 3	ND	Loose, black SAND with Gravel, Cinders, and Slag Loose, light brown, fine-grained SAND (SP)	0.41	Fill			
-			3 8		Medium dense, light brown, fine-grained SAND (SP)		Alluvium Alluvium			
5	S	24/24	9	ND	2"-thick Sandy CLAY lense		÷			
-			5 6 6		Becomes loose to medium dense					
-	S	24/24	4	ND			⊈			
-	s	24/24	9 11 13 7	ND	~					
10-										

BORING LOG CA-SB16										
PROJE LOGGE SURFA WATER WATER	CT LC ED BY CE EL R ENTI R SURI	LEVATION RY DEP	UPRR OFO Garcia ON TH7. EPTH _		PROJECT NO91MC204					
ft.		SA	MPLE		-			_		
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
10-		×			Becomes medium-grained					
							BOTTOM OF BORING @ 11'			
_					_					
_					_		NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', and			
15-							9'-11.			
-					_					
_					_					
20-					-					

BORING LOG CA-SB17									
PROJE LOGGE SURFA WATER	CT LCED BY CE EI RENT R SUR		N <u>C</u> Garcia DN <u> </u>	-	PROJECT NO91MC204 TASK NO302				
÷		SA	MPLE W					Z	
, ОЕРТН,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD	ELEVATION	
0-					8" black ASPHALT		Pavement		
-					Ballast with a trace of Clayey SILT	War War State	Fill		
-					Firm, light brown, low plastic, Silty CLAY (CL)		Fill		
5—	S	8/24	5 4 6 6	ND			Moist BZ=ND		
-	S	12/24	1 1 1 1	ND	Soft, light brown, Clayey SILT (ML)		Fill		
10-	S	17/24	1 4 5 5	ND	Loose, gray, fine- to medium-grained SAND (SP)		Alluvium		

PROJECT PROJECT LOGGED I SURFACE WATER EN WATER SU COMMEN	LOCATION BY J. G ELEVATIO NTRY DEPT JRFACE DE	N _ O Parcia N TH _8.5 EPTH _	-	SHEET of PROJECT NO91MC20 TASK NO302 DATE2/25/92 RIG CME_55 METHOD4.25-inch ID_I	04		
G DEPTH, ft.	≿	RESISTANCE T	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION
15-						BOTTOM OF BORING @ 11' NOTE: Collected soil samples for chemical analysis at 2.5'-4.5', 6'-8', and 9'-11.	

BORING LOG CA-SB18										
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI ENT SUR	AMIE DCATION	NC Garcia N TH _7	_	PROJECT NO91MC204					
ft.		SAI	MPLE	1				-		
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION		
0 -	S	12/12	8 10	ND	Loose, black SAND with Gravel, Cinders, and Slag	SENETH AND SENETHER WAS	Fill			
-	S	13/24	1 2 3 4	ND	Soft, brown, Sandy SILT (ML)		Fill			
5—					Loose, brown, fine-grained SAND (SP)		Alluvium			
-	S	24/24	3 3 5 7	ND	Soft, brown, Silty SAND (SM) With fine-grained Sand lenses		Alluvium			
_					Loose, brown, fine-grained SAND		Z Alluvium			
10-	S	24/24	3 3 5 6	ND						

BORING LOG CA-SB18												
PROJECT LOGGE SURFACT WATER	CT LC ED BY CE EL ENTI	CATION J. COLUMN	UPRR N _ O Garcia N TH _ 7. EPTH _	_	PROJECT NO91MC204 TASK NO302							
++.		SA	MPLE					_				
O DEPTH, 4	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION				
-					Becomes medium -grained							
					_		BOTTOM OF BORING @ 11'					
					_		NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-5', 6'-8', and 9'-11.					
15-												
-					-		,					
-					_							
_					-							
-					-							
20-												

BORING LOG CA-SB19													
PROJE LOGGE SURFA WATER	CT LC ED BY CE EI	LEVATION DEP	TH N		SHEET of								
WATER SURFACE DEPTH NR FEET AD METHOD 4.25-inch ID HSA COMMENTS													
ft.		SAI	MPLE										
DEPTH,	TYPE	RECOVERY	RESISTANCE	HS, PPM	DESCRIPTION	SYMBOL	FIELD NOTES	ELEVATION					
0-	S	9/12	28/12"	ND	Loose to medium dense, black CLAY with	%	Fill						
5— - - - - -	S	9/12 12/18 2/18	19 8 6 10 23 25	ND	Loose to medium dense, black CLAY with Gravel, Cinders, and Slag Soft, mottled black and light brown, low plastic, Silty CLAY (CL) Medium dense, light gray, fine-grained, Silty SAND (SM) Loose, light gray, fine-grained SAND with lenses of Sandy SILT (SP w/ML)		Fill Fill BZ=ND Alluvium Alluvium						
- - 15— - - 20— - - - 25—			9				BOTTOM OF BORING @ 11.5' NOTE: Collected soil samples for chemical analysis at 0'-1', 3'-4.5', and 9.5'-11.5'.						